Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patricia Santofimia-Castaño is active.

Publication


Featured researches published by Patricia Santofimia-Castaño.


Cell Death & Differentiation | 2015

Astrocyte NMDA receptors' activity sustains neuronal survival through a Cdk5-Nrf2 pathway

Daniel Jimenez-Blasco; Patricia Santofimia-Castaño; Antonio González; Angeles Almeida; Juan P. Bolaños

Neurotransmission unavoidably increases mitochondrial reactive oxygen species. However, the intrinsic antioxidant defense of neurons is weak and hence the mechanism whereby these cells are physiologically protected against oxidative damage is unknown. Here we found that the antioxidant defense of neurons is repressed owing to the continuous protein destabilization of the master antioxidant transcriptional activator, nuclear factor-erythroid 2-related factor-2 (Nrf2). By contrast, Nrf2 is highly stable in neighbor astrocytes explaining their robust antioxidant defense and resistance against oxidative stress. We also show that subtle and persistent stimulation of N-methyl-d-aspartate receptors (NMDAR) in astrocytes, through a mechanism not requiring extracellular Ca2+ influx, upregulates a signal transduction pathway involving phospholipase C-mediated endoplasmic reticulum release of Ca2+ and protein kinase Cδ activation. Active protein kinase Cδ promotes, by phosphorylation, the stabilization of p35, a cyclin-dependent kinase-5 (Cdk5) cofactor. Active p35/Cdk5 complex in the cytosol phosphorylates Nrf2 at Thr395, Ser433 and Thr439 that is sufficient to promote Nrf2 translocation to the nucleus and induce the expression of antioxidant genes. Furthermore, this Cdk5–Nrf2 transduction pathway boosts glutathione metabolism in astrocytes efficiently protecting closely spaced neurons against oxidative damage. Thus, intercellular communication through NMDAR couples neurotransmission with neuronal survival.


Free Radical Biology and Medicine | 2015

Melatonin induces the expression of Nrf2-regulated antioxidant enzymes via PKC and Ca2+ influx activation in mouse pancreatic acinar cells.

Patricia Santofimia-Castaño; Deborah Clea Ruy; Lourdes Garcia-Sanchez; Daniel Jimenez-Blasco; Miguel Fernandez-Bermejo; Juan P. Bolaños; Ginés M. Salido; Antonio González

The goal of this study was to evaluate the potential activation of the nuclear factor erythroid 2-related factor and the antioxidant-responsive element (Nrf2-ARE) signaling pathway in response to melatonin in isolated mouse pancreatic acinar cells. Changes in intracellular free Ca(2+) concentration were followed by fluorimetric analysis of fura-2-loaded cells. The activations of PKC and JNK were measured by Western blot analysis. Quantitative reverse transcription-polymerase chain reaction was employed to detect the expression of Nrf2-regulated antioxidant enzymes. Immunocytochemistry was employed to determine nuclear location of phosphorylated Nrf2, and the cellular redox state was monitored following MitoSOX Red-derived fluorescence. Our results show that stimulation of fura-2-loaded cells with melatonin (1 µM to 1 mM), in the presence of Ca(2+) in the extracellular medium, induced a slow and progressive increase of [Ca(2+)](c) toward a stable level. Melatonin did not inhibit the typical Ca(2+) response induced by CCK-8 (1 nM). When the cells were challenged with indoleamine in the absence of Ca(2+) in the extracellular solution (medium containing 0.5 mM EGTA) or in the presence of 1 mM LaCl(3), to inhibit Ca(2+) entry, we could not detect any change in [Ca(2+)](c). Nevertheless, CCK-8 (1 nM) was able to induce the typical mobilization of Ca(2+). When the cells were incubated with the PKC activator PMA (1 µM) in the presence of Ca(2+) in the extracellular medium, we observed a response similar to that noted when the cells were challenged with melatonin 100 µM. However, in the presence of Ro31-8220 (3 µM), a PKC inhibitor, stimulation of cells with melatonin failed to evoke changes in [Ca(2+)]c. Immunoblots, using an antibody specific for phospho-PKC, revealed that melatonin induces PKCα activation, either in the presence or in the absence of external Ca(2+). Melatonin induced the phosphorylation and nuclear translocation of the transcription factor Nrf2, and evoked a concentration-dependent increase in the expression of the antioxidant enzymes NAD(P)H-quinone oxidoreductase 1, catalytic subunit of glutamate-cysteine ligase, and heme oxygenase-1. Incubation of MitoSOX Red-loaded pancreatic acinar cells in the presence of 1 nM CCK-8 induced a statistically significant increase in dye-derived fluorescence, reflecting an increase in oxidation, that was abolished by pretreatment of cells with melatonin (100 µM) or PMA (1 µM). On the contrary, pretreatment with Ro31-8220 (3 µM) blocked the effect of melatonin on CCK-8-induced increase in oxidation. Finally, phosphorylation of JNK in the presence of CCK-8 or melatonin was also observed. We conclude that melatonin, via modulation of PKC and Ca(2+) signaling, could potentially stimulate the Nrf2-mediated antioxidant response in mouse pancreatic acinar cells.


Journal of Trace Elements in Medicine and Biology | 2015

Modulation of copper accumulation and copper-induced toxicity by antioxidants and copper chelators in cultured primary brain astrocytes

Felix Bulcke; Patricia Santofimia-Castaño; Antonio González-Mateos; Ralf Dringen

Copper is essential for several important cellular processes, but an excess of copper can also lead to oxidative damage. In brain, astrocytes are considered to play a pivotal role in the copper homeostasis and antioxidative defence. To investigate whether antioxidants and copper chelators can modulate the uptake and the toxicity of copper ions in brain astrocytes, we used primary astrocytes as cell culture model. These cells accumulated substantial amounts of copper during exposure to copper chloride. Copper accumulation was accompanied by a time- and concentration-dependent loss in cell viability, as demonstrated by a lowering in cellular MTT reduction capacity and by an increase in membrane permeability for propidium iodide. During incubations in the presence of the antioxidants ascorbate, trolox or ebselen, the specific cellular copper content and the toxicity in copper chloride-treated astrocyte cultures were strongly increased. In contrast, the presence of the copper chelators bathocuproine disulfonate or tetrathiomolybdate lowered the cellular copper accumulation and the copper-induced as well as the ascorbate-accelerated copper toxicity was fully prevented. These data suggest that predominantly the cellular content of copper determines copper-induced toxicity in brain astrocytes.


DNA and Cell Biology | 2013

Ebselen alters mitochondrial physiology and reduces viability of rat hippocampal astrocytes.

Patricia Santofimia-Castaño; Ginés M. Salido; Antonio Gonzalez

The seleno-organic compound and radical scavenger ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one) have been extensively employed as an anti-inflammatory and neuroprotective compound. However, its glutathione peroxidase activity at the expense of cellular thiols groups could underlie certain deleterious actions of the compound on cell physiology. In this study, we have analyzed the effect of ebselen on rat hippocampal astrocytes in culture. Cellular viability, the intracellular free-Ca(2+) concentration ([Ca(2+)]c), the mitochondrial free-Ca(2+) concentration ([Ca(2+)]m), and mitochondrial membrane potential (ψm) were analyzed. The caspase-3 activity was also assayed. Our results show that cell viability was reduced by treatment of cells with ebselen, depending on the concentration employed. In the presence of ebselen, we observed an initial transient increase in [Ca(2+)]c that was then followed by a progressive increase to an elevated plateau. We also observed a transient increase in [Ca(2+)]m in the presence of ebselen that returned toward a value over the prestimulation level. The compound induced depolarization of ψm and altered the permeability of the mitochondrial membrane. Additionally, a disruption of the mitochondrial network was observed. Finally, we did not detect changes in caspase-3 activation in response to ebselen treatment. Collectively, these data support the likelihood of ebselen, depending on the concentration employed, reduces viability of rat hippocampal astrocytes via its action on the mitochondrial activity. These may be early effects that do not involve caspase-3 activation. We conclude that, depending on the concentration used, ebselen might exert deleterious actions on astrocyte physiology that could compromise cell function.


Brain Research | 2011

Ethanol reduces kainate-evoked glutamate secretion in rat hippocampal astrocytes

Patricia Santofimia-Castaño; Ginés M. Salido; Antonio González

In this study we have used rat hippocampal astrocytes in culture to investigate the effect of ethanol on kainate-induced glutamate secretion. Our results show that kainate (10 μM to 500 μM) stimulated glutamate release from astrocytes. Preincubation of astrocytes in the presence of ethanol induced a concentration-dependent (1mM-50mM) inhibition of glutamate release caused by stimulation of cells with 100 μM kainate. Inhibition of alcohol-dehydrogenase, by preincubation of astrocytes in the presence of 4-methylpyrazole (1mM), abolished ethanol-induced inhibition of glutamate release in response to kainate. On the other hand, preincubation of astrocytes in the presence of the antioxidant cinnamtannin B-1 (10 μM) also blocked ethanol inhibitory action on glutamate release in response to kainate. Ethanol (50mM) reduced Ca(2+) mobilization in response to kainate, whereas cinnamtannin B-1 reversed the inhibitory action of ethanol on Ca(2+) mobilization by kainate. Our results are consistent with an inhibitory action of ethanol on glutamate secretion from hippocampal astrocytes. The inhibitory effects of ethanol are probably due to its oxidative metabolization, involves reactive oxygen species production, and a lower Ca(2+) mobilization by kainate. Taking into account the pivotal role that astrocytes play within the central nervous system, especially in relation to neurons, the negative effects of ethanol on the release of glutamate might affect neuron-glia communication in the hippocampus, which might lead to functional defects in the brain.


Toxicology Letters | 2014

The seleno-organic compound ebselen impairs mitochondrial physiology and induces cell death in AR42J cells.

Patricia Santofimia-Castaño; Lourdes Garcia-Sanchez; Deborah Clea Ruy; Miguel Fernandez-Bermejo; Ginés M. Salido; Antonio González

Ebselen is a seleno-organic compound that causes cell death in several cancer cell types. The mechanisms underlying its deleterious effects have not been fully elucidated. In this study, the effects of ebselen (1 μM-40 μM) on AR42J tumor cells have been examined. Cell viability was studied using AlamarBlue(®) test. Cell cycle phase determination was carried out by flow cytometry. Changes in intracellular free Ca(2+) concentration were followed by fluorimetry analysis of fura-2-loaded cells. Distribution of mitochondria, mitochondrial Ca(2+) concentration and mitochondrial membrane potential were monitored by confocal microscopy of cells loaded with Mitotracker Green™ FM, rhod-2 or TMRM respectively. Caspase-3 activity was calculated following the luorogenic substrate ACDEVD-AMC signal with a spectrofluorimeter. Results show that cell viability decreased in the presence of ebselen. An increase in the number of cells in the S-phase of the cell cycle was observed. Ebselen induced a concentration-dependent mobilization of Ca(2+) from agonist- and thapsigargin-sensitive Ca(2+) pools. Ebselen induced also a transient increase in mitochondrial Ca(2+) concentration, a progressive decrease of the mitochondrial membrane potential and a disruption of the mitochondrial network. Finally, a concentration-dependent increase in caspase-3 activity was detected. We conclude that ebselen exerts deleterious actions on the cells that involve the impairment of mitochondrial physiology and the activation of caspase-3-mediated apoptotic pathway.


Toxicology | 2016

Ebselen alters cellular oxidative status and induces endoplasmic reticulum stress in rat hippocampal astrocytes.

Patricia Santofimia-Castaño; Alicia Izquierdo-Álvarez; Irene de la Casa-Resino; Antonio Martínez-Ruiz; Marcos Pérez-López; Juan C. Portilla; Ginés M. Salido; Antonio González

Ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one) is an organoselenium radical scavenger compound, which has strong antioxidant and anti-inflammatory effects. Because of its properties, it may be protective against injury to the nervous tissue. However, evidence suggests that its glutathione peroxidase activity could underlie certain deleterious actions on cell physiology. In this study we have analyzed the effect of ebselen on rat hippocampal astrocytes in culture. Cellular oxidative status, cytosolic free-Ca(2+) concentration ([Ca(2+)]c), setting of endoplasmic reticulum stress and phosphorylation of glial fibrillary acidic protein and major mitogen-activated protein kinases were analyzed. Our results show that ebselen induced a concentration-dependent increase in the generation of reactive oxygen species in the mitochondria. We observed a concentration-dependent increase in global cysteine oxidation and in the level of malondialdehyde in the presence of ebselen. We also detected increases in catalase, glutathione S-transferase and glutathione reductase activity. Ebselen also evoked a concentration-dependent increase in [Ca(2+)]c. Moreover, we observed a concentration-dependent increase in the phosphorylation of the unfolded protein response markers, eukaryotic translation initiation factor 2α and X-box binding protein 1. Finally, ebselen also induced an increase in the phosphorylation of glial fibrillary acidic protein, SAPK/JNK, p38 MAPK and p44/42 MAPK. Our results provide strong evidence that implicate endoplasmic reticulum stress and activation of crucial mitogen-activated protein kinases in an oxidative damage of cells in the presence of ebselen. The compound thus might exert deleterious actions on astrocyte physiology that could compromise their function.


Open Access Journal of Science and Technology | 2014

Change in the Characteristics of Ca 2+ Signaling in Pancreatic Acinar Cells in Culture

Patricia Santofimia-Castaño; Andreas Schmid; Ines Anderie; Miguel Fernandez-Bermejo; Ginés M. Salido; Antonio Gonzalez

In this study we studied Ca2+ responses to different stimuli in pancreatic acinar cells subjected to culture conditions. Cells were isolated from adult mice pancreas and were subjected to culture conditions along one week. Changes in intracellular free Ca2+ concentration were monitored by single cell fluorescence analysis of fura-2-loaded cells. Mitochondrial distribution was analyzed by confocal microscopy study of MitoTracker Green FM-loaded cells. Expression of amylase-containing cytoplasmic vesicles was analyzed by confocal microscopy study of cells transfected with a plasmid encoding amylase linked to a green fluorescent protein. Cell viability was analyzed employing the AlamarBlue test. Our results show that pancreatic cells in culture retain a mitochondrial network and amylase-positive vesicles. However, cells dropped their ability to mobilize Ca2+ in response to activation of cell membrane receptors. Ca2+ mobilization in response to the sarcoendoplasmic reticulum Ca2+-ATPase inhibitor thapsigargin was not altered. Cell viability was not affected by treatment with cholecystokinin, but was reduced in the presence of thapsigargin or hydrogen peroxide. We conclude that primary culture of pancreatic cells may be a suitable model to be used in studies where the involvement of mechanisms linked to the activation of specific cell membrane receptors is not required.


bioRxiv | 2018

Inactivation of NUPR1 promotes cell death by coupling ER-stress responses with necrosis

Juan L. Iovanna; Patricia Santofimia-Castaño; Wenjun Lan; Jennifer Bintz; Odile Gayet; Alice Carrier; Gwen Lomberk; José L. Neira; Antonio González; Raul Urrutia; Philippe Soubeyran

Genetic inhibition of NUPR1 induces tumor growth arrest. Inactivation of NUPR1 expression in pancreatic cancer cells results in lower ATP production, higher consumption of glucose with a significant switch from OXPHOS to glycolysis followed by necrotic cell death. Importantly, induction of necrosis is independent of the caspase activity. We demonstrated that NUPR1 inactivation triggers a massive release of Ca2+ from the endoplasmic reticulum (ER) to the cytosol and a strong increase in ROS production by mitochondria with a concomitant relocalization of mitochondria to the vicinity of the ER. In addition, transcriptomic analysis of NUPR1-deficient cells shows the induction of an ER stress which is associated to a decrease in the expression of some ER stress response-associated genes. Indeed, during ER stress induced by the treatment with thapsigargin, brefeldin A or tunicamycin, an increase in the mitochondrial malfunction with higher induction of necrosis was observed in NUPR1-defficent cells. Finally, activation of NUPR1 during acute pancreatitis protects acinar cells of necrosis in mice. Altogether, these data enable us to describe a model in which inactivation of NUPR1 in pancreatic cancer cells results in an ER stress that induces a mitochondrial malfunction, a deficient ATP production and, as consequence, the cell death by necrosis. Highlights NUPR1 expression promotes pancreatic cancer development and progression NUPR1-depletion is a promising therapeutic strategy to be used for treating cancers NUPR1-depletion induces ER stress, mitochondrial malfunction and a significant switch from OXPHOS to glycolysis followed by necrotic cell death Inactivation of NUPR1 antagonizes cell growth by coupling a defective ER-stress response and a caspase-independent necrosis.


Journal of Cellular Biochemistry | 2018

Ebselen impairs cellular oxidative state and induces endoplasmic reticulum stress and activation of crucial mitogen-activated protein kinases in pancreatic tumour AR42J cells†

Patricia Santofimia-Castaño; Alicia Izquierdo-Álvarez; María Plaza-Davila; Antonio Martínez-Ruiz; Miguel Fernandez-Bermejo; Jose M. Mateos-Rodriguez; Ginés M. Salido; Antonio González

Ebselen (2‐phenyl‐1,2‐benzisoselenazol‐3(2H)‐one) is an organoselenium radical scavenger compound, which has strong antioxidant and anti‐inflammatory effects. However, evidence suggests that this compound could exert deleterious actions on cell physiology. In this study, we have analyzed the effect of ebselen on rat pancreatic AR42J cells. Cytosolic free‐Ca2+ concentration ([Ca2+]c), cellular oxidative status, setting of endoplasmic reticulum stress, and phosphorylation of major mitogen‐activated protein kinases were analyzed. Our results show that ebselen evoked a concentration‐dependent increase in [Ca2+]c. The compound induced an increase in the generation of reactive oxygen species in the mitochondria. We also observed an increase in global cysteine oxidation in the presence of ebselen. In the presence of ebselen an impairment of cholecystokinin‐evoked amylase release was noted. Moreover, involvement of the unfolded protein response markers, ER chaperone and signaling regulator GRP78/BiP, eukaryotic translation initiation factor 2α and X‐box binding protein 1 was detected. Finally, increases in the phosphorylation of SAPK/JNK, p38 MAPK, and p44/42 MAPK in the presence of ebselen were also observed. Our results provide evidences for an impairment of cellular oxidative state and enzyme secretion, the induction of endoplasmic reticulum stress and the activation of crucial mitogen‐activated protein kinases in the presence of ebselen. As a consequence ebselen exerts a potential toxic effect on AR42J cells.

Collaboration


Dive into the Patricia Santofimia-Castaño's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonio Gonzalez

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

Antonio Martínez-Ruiz

Centro Nacional de Investigaciones Cardiovasculares

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge