Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patricia Ucelli Simioni is active.

Publication


Featured researches published by Patricia Ucelli Simioni.


Mediators of Inflammation | 2015

Inflammatory Bowel Disease: An Overview of Immune Mechanisms and Biological Treatments

Bruno Rafael Ramos de Mattos; Maellin Pereira Gracindo Garcia; Julia Bier Nogueira; Lisiery N. Paiatto; Cassia Galdino Albuquerque; Caique Lopes Souza; Luis Gustavo Romani Fernandes; Wirla Maria da Silva Cunha Tamashiro; Patricia Ucelli Simioni

Inflammatory bowel diseases (IBD) are characterized by chronic inflammation of the intestinal tract associated with an imbalance of the intestinal microbiota. Crohns disease (CD) and ulcerative colitis (UC) are the most widely known types of IBD and have been the focus of attention due to their increasing incidence. Recent studies have pointed out genes associated with IBD susceptibility that, together with environment factors, may contribute to the outcome of the disease. In ulcerative colitis, there are several therapies available, depending on the stage of the disease. Aminosalicylates, corticosteroids, and cyclosporine are used to treat mild, moderate, and severe disease, respectively. In Crohns disease, drug choices are dependent on both location and behavior of the disease. Nowadays, advances in treatments for IBD have included biological therapies, based mainly on monoclonal antibodies or fusion proteins, such as anti-TNF drugs. Notwithstanding the high cost involved, these biological therapies show a high index of remission, enabling a significant reduction in cases of surgery and hospitalization. Furthermore, migration inhibitors and new cytokine blockers are also a promising alternative for treating patients with IBD. In this review, an analysis of literature data on biological treatments for IBD is approached, with the main focus on therapies based on emerging recombinant biomolecules.


BMC Biochemistry | 2004

Suppression of nitric oxide production in mouse macrophages by soybean flavonoids accumulated in response to nitroprusside and fungal elicitation

Loren S Scuro; Patricia Ucelli Simioni; Dl Grabriel; Elzira Elisabeth Saviani; Luzia V. Modolo; Wirla M. S. C. Tamashiro; Ione Salgado

BackgroundThe anti-inflammatory properties of some flavonoids have been attributed to their ability to inhibit the production of NO by activated macrophages. Soybean cotyledons accumulate certain flavonoids following elicitation with an extract of the fungal pathogen Diaporthe phaseolorum f. sp. meridionalis (Dpm). Sodium nitroprusside (SNP), a nitric oxide donor, can substitute for Dpm in inducing flavonoid production. In this study, we investigated the effect of flavonoid-containing diffusates obtained from Dpm- and SNP-elicited soybean cotyledons on NO production by lipopolysaccharide (LPS)- and LPS plus interferon-γ (IFNγ)-activated murine macrophages.ResultsSignificant inhibition of NO production, measured as nitrite formation, was observed when macrophages were activated in the presence of soybean diffusates from Dpm- or SNP-elicited cotyledons. This inhibition was dependent on the duration of exposure to the elicitor. Daidzein, genistein, luteolin and apigenin, the main flavonoids present in diffusates of elicited cotyledons, suppressed the NO production by LPS + IFNγ activated macrophages in a concentration-dependent manner, with IC50 values of 81.4 μM, 34.5 μM, 38.6 μM and 10.4 μM respectively. For macrophages activated with LPS alone, the IC50 values were 40.0 μM, 16.6 μM, 10.4 μM and 2.8 μM, respectively. Western blot analysis showed that iNOS expression was not affected by daidzein, was reduced by genistein, and was abolished by apigenin, luteolin and Dpm- and SNP-soybean diffusates at concentrations that significantly inhibited NO production by activated macrophages.ConclusionsThese results suggest that the suppressive effect of flavonoids on iNOS expression could account for the potent inhibitory effect of Dpm- and SNP-diffusates on NO production by activated macrophages. Since the physiological concentration of flavonoids in plants is normally low, the treatment of soybean tissues with SNP may provide a simple method for substantially increasing the concentration of metabolites that are beneficial for the treatment of chronic inflammatory diseases associated with NO production.


Brazilian Journal of Medical and Biological Research | 2011

Aging alters the production of iNOS, arginase and cytokines in murine macrophages

C.A. Cecílio; E.H. Costa; Patricia Ucelli Simioni; Dirce Lima Gabriel; Wirla Maria da Silva Cunha Tamashiro

The limited amount of information on the primary age-related deficiencies in the innate immune system led us to study the production of inducible nitric oxide synthase (iNOS), arginase, and cytokines in macrophages of young (8 weeks old) and old (72 weeks old) female BALB/c mice. We first evaluated iNOS and arginase inducers on peritoneal (PMΦ) and bone marrow-derived (BMMΦ) macrophages of young BALB/c and C57BL/6 mice, and then investigated their effects on macrophages of old mice. Upon stimulation with lipopolysaccharide (LPS), resident and thioglycolate-elicited PMΦ from young mice presented higher iNOS activity than those from old mice (54.4%). However, LPS-stimulated BMMΦ from old mice showed the highest NO levels (50.1%). Identical NO levels were produced by PMΦ and BMMΦ of both young and old mice stimulated with interferon-γ. Arginase activity was higher in resident and elicited PMΦ of young mice stimulated with LPS (48.8 and 32.7%, respectively) and in resident PMΦ stimulated with interleukin (IL)-4 (64%). BMMΦ of old mice, however, showed higher arginase activity after treatment with IL-4 (46.5%). In response to LPS, PMΦ from old mice showed the highest levels of IL-1α (772.3 ± 51.9 pg/mL), whereas, those from young mice produced the highest amounts of tumor necrosis factor (TNF)-α (937.2 ± 132.1 pg/mL). Only TNF-α was expressed in LPS-treated BMMΦ, and cells from old mice showed the highest levels of this cytokine (994.1 ± 49.42 pg/mL). Overall, these results suggest that macrophages from young and old mice respond differently to inflammatory stimuli, depending on the source and maturity of the cell donors.


Scandinavian Journal of Immunology | 2004

Induction of systemic tolerance in normal but not in transgenic mice through continuous feeding of ovalbumin.

Patricia Ucelli Simioni; Luis Gustavo Romani Fernandes; Dirce Lima Gabriel; Wirla Maria da Silva Cunha Tamashiro

The ingestion of most dietary protein can cause systemic tolerance, and such tolerance is easier to induce in younger than in older mice. In this study, we examined whether oral tolerance to ovalbumin (OVA) could be induced in OVA‐T‐cell receptor (OVA‐TCR)‐specific transgenic mice. Continuous feeding or gavage with OVA induced tolerance, measured as reduced antibody production, in young and aged BALB/c mice, in a dose‐dependent manner, but this effect was not observed in transgenic mice. Once BALB/c mice became tolerant, this state was maintained for over 44 weeks, although the tolerant state could be reversed by adoptive cell transfer. DO11.10 mice did not become tolerant upon continuous feeding with OVA, and the adoptive transfer of naïve cells increased the levels of specific antibodies in their sera after antigenic challenge. The immunization schedule used here leads to a Th2‐dependent antibody response in normal BALB/c mice. However, the same schedule induced both Th1‐ and Th2‐antibody responses in transgenic mice. Dendritic cells (DC) from tolerant BALB/c mice were less efficient in the induction of the proliferation of cocultured T cells from both BALB/c and DO11.10 mice, as well as Th1 [interleukin (IL)‐2 and interferon (IFN)‐γ] and Th2 (IL‐4 and IL‐10) cytokine production. The DC from DO11.10 transgenic mice were equally efficient in the induction of T‐cell proliferation in both normal and transgenic mice, as well as in the induction of Th1 and Th2 cytokines, whether or not the mice consumed OVA. Transforming growth factor (TGF)‐β secretion was significantly lower in the supernatants of T cells from both normal and transgenic mice cocultured with DC from DO11.10 mice that had consumed OVA, while it was significantly higher in the presence of DC from normal tolerant mice, thus implicating TGF‐β as a regulatory cytokine in oral tolerance in the murine model.


Brazilian Journal of Medical and Biological Research | 2007

Aging reduces the primary humoral response and the in vitro cytokine production in mice

Patricia Ucelli Simioni; E.H. Costa; Wirla Maria da Silva Cunha Tamashiro

Aging is accompanied by a decrease in several physiological functions that make older individuals less responsive to environmental challenges. In the present study, we analyzed the immune response of female BALB/c mice (N = 6) of different ages (from 2 to 96 weeks) and identified significant age-related alterations. Immunization with hapten-protein (trinitrophenyl-bovine serum albumin) conjugates resulted in lower antibody levels in the primary and secondary responses of old mice (72 weeks old). Moreover, young mice (2, 16, and 32 weeks old) maintained specific antibodies in their sera for longer periods after primary immunization than did old mice. However, a secondary challenge efficiently induced memory in old mice, as shown by the increased antibody levels in their sera. The number of CD4+ and CD8+ T cells in the spleen increased until 8 weeks of age but there was no change in the CD4+/CD8+ ratio with aging. Splenic T cells from old mice that had or had not been immunized were less responsive to concanavalin-A and showed reduced cytokine production compared to young mice (IL-2: 57-127 vs 367-1104 pg/mL, IFN-gamma: 2344-12,836 vs 752-23,106 pg/mL and IL-10: 393-2172 vs 105-2869 pg/mL in old and young mice, respectively). These data suggest that there are significant changes in the organization of the immune system throughout life. However, the relevance of these alterations for the functioning of the immune system is unknown.


Cellular Immunology | 2012

Oral tolerance and OVA-induced tolerogenic dendritic cells reduce the severity of collagen/ovalbumin-induced arthritis in mice

Rodolfo Thomé; Luis Gustavo Romani Fernandes; Marcela Franco Mineiro; Patricia Ucelli Simioni; Paulo Pinto Joazeiro; Wirla Maria da Silva Cunha Tamashiro

Dietary proteins play an important role in the regulation of systemic immune response, in a phenomenon known as oral tolerance (OT). To evaluate the effects of OT on a murine model of type II collagen (CII) plus ovalbumin (OVA)-induced arthritis (CIA), mice were fed with OVA either before or after CIA induction. OT significantly reduced the paw edema and synovial inflammation, as well as serum levels of anti-CII, the ex vivo proliferation and inflammatory cytokine production by spleen cells from CIA mice. The frequencies of Foxp3(+) and IL-10(+) cells were higher, whereas IFNγ(+) cells and IL-17(+) cells were lower, among gated CD4(+) spleen T cells from tolerized CIA mice than in those from non-tolerized CIA mice. Adoptive transfer of tolerogenic dendritic cells (DCs) before CIA induction mimics the effects observed in the OT. We demonstrate here that bystander suppression induced by OT can modify the course of CIA and tolerogenic DCs play a role this phenomenon.


Clinical & Developmental Immunology | 2015

Tolerogenic Dendritic Cells on Transplantation: Immunotherapy Based on Second Signal Blockage

Priscila de Matos Silva; Julia Bier; Lisiery N. Paiatto; Cassia Galdino Albuquerque; Caique Lopes Souza; Luis Gustavo Romani Fernandes; Wirla Maria da Silva Cunha Tamashiro; Patricia Ucelli Simioni

Dendritic cells (DCs), the most important professional antigen-presenting cells (APC), play crucial role in both immunity and tolerance. It is well known that DCs are able to mount immune responses against foreign antigens and simultaneously tolerate self-antigens. Since DCs can be modulated depending on the surrounding microenvironment, they can act as a bridge between innate and adaptive immunity. However, the mechanisms that support this dual role are not entirely clear. Recent studies have shown that DCs can be manipulated ex vivo in order to trigger their tolerogenic profile, what can be a tool to be used in clinical trials aiming the treatment of various diseases and the prevention of transplant rejection. In this sense, the blockage of costimulatory molecules on DC, in the attempt of inhibiting the second signal in the immunological synapse, can be considered as one of the main strategies under development. This review brings an update on current therapies using tolerogenic dendritic cells modulated with costimulatory blockers with the aim of reducing transplant rejection. However, although there are current clinical trials using tolerogenic DC to treat allograft rejection, the actual challenge is to modulate these cells in order to maintain a permanent tolerogenic profile.


BMC Complementary and Alternative Medicine | 2015

Evaluation of in vitro anti-inflammatory effects of crude ginger and rosemary extracts obtained through supercritical CO2 extraction on macrophage and tumor cell line: the influence of vehicle type.

Oselys Rodriguez Justo; Patricia Ucelli Simioni; Dirce Lima Gabriel; Wirla Maria da Silva Cunha Tamashiro; Paulo de Tarso Vieira e Rosa; Ângela Maria Moraes

BackgroundNumerous plants from have been investigated due to their anti-inflammatory activity and, among then, extracts or components of ginger (Zingiber officinale Roscoe) and rosemary (Rosmarinus officinalis L.), sources of polyphenolic compounds. 6-gingerol from ginger rhizome and carnosic acid and carnosol from rosemary leaves present anti-tumor, anti-inflammatory and antioxidant activities. However, the evaluation of the mechanisms of action of these and other plant extracts is limited due to their high hydrophobicity. Dimethylsulfoxide (DMSO) is commonly used as a vehicle of liposoluble materials to mammalian cells in vitro, presenting enhanced cell penetration. Liposomes are also able to efficiently deliver agents to mammalian cells, being capable to incorporate in their structure not only hydrophobic molecules, but also hydrophilic and amphiphilic compounds. Another strategy is based on the use of Pluronic F-68, a biocompatible low-foaming, non-ionic surfactant, to disperse hydrophobic components. Here, these three delivery approaches were compared to analyze their influence on the in vitro anti-inflammatory effects of ginger and rosemary extracts, at different concentrations, on primary mammalian cells and on a tumor cell line.MethodsGinger and rosemary extracts free of organic solvents were obtained by supercritical fluid extraction and dispersed in DMSO, Pluronic F-68 or liposomes, in variable concentrations. Cell viability, production of inflammatory mediators and nitric oxide (NO) release were measured in vitro on J774 cell line and murine macrophages primary culture stimulated with bacterial lipopolysaccharide and interferon-γ after being exposed or not to these extracts.ResultsGinger and rosemary extracts obtained by supercritical CO2 extraction inhibited the production of pro-inflammatory cytokines and the release of NO by peritoneal macrophages and J774 cells. The delivery vehicles influenced the anti-inflammatory effects. Comparatively, the ginger extract showed the highest anti-inflammatory activity on the tumor cell line. Controversially, rosemary extract dispersed on DMSO induced a more significant IL-1 and TNF-α reduction than ginger extract in primary macrophages.ConclusionsAmongst the tested delivery vehicles, DMSO was the most suitable, presenting reduced cytotoxicity, followed by Pluronic F-68 and liposomes, provably due to differences in their form of absorption, distribution and cellular metabolism. Co-administration of liposomes and plant extracts may cause death of macrophages cells and induction of NO production. It can be concluded that some of the beneficial effects attributed to extracts of ginger and rosemary may be associated with the inhibition of inflammatory mediators due to their high antioxidant activity. However, these effects were influenced by the type of delivery vehicle.


Human Vaccines & Immunotherapeutics | 2017

Targeted therapies for the treatment of non-small-cell lung cancer: Monoclonal antibodies and biological inhibitors

Ana P. S. Silva; Priscila V. Coelho; Maristella Anazetti; Patricia Ucelli Simioni

ABSTRACT The usual treatments for patients with non-small-cell lung cancer (NSCLC), such as advanced lung adenocarcinoma, are unspecific and aggressive, and include lung resection, radiotherapy and chemotherapy. Recently, treatment with monoclonal antibodies and biological inhibitors has emerged as an effective alternative, generating effective results with few side effects. In recent years, several clinical trials using monoclonal antibodies presented potential benefits to NSCLC, and 4 of them are already approved for the treatment of NSCLC, such as cetuximab, bevacizumab, nivolumab and pembrolizumab. Also, biological inhibitors are attractive tolls for biological applications. Among the approved inhibitors are crizotinib, erlotinib, afatinib and gefitinib, and side effects are usually mild to intense. Nevertheless, biological molecule treatments are under development, and several new monoclonal antibodies and biological inhibitors are in trial to treat NSCLC. Also under trial study are as follows: anti-epidermal growth factor receptor (EGFR) antibodies (nimotuzumab and ficlatuzumab), anti-IGF 1 receptor (IGF-1R) monoclonal antibody (figitumumab), anti-NR-LU-10 monoclonal antibody (nofetumomab) as well as antibodies directly affecting the cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) molecule (ipilimumab and tremelimumab), to receptor activator of nuclear factor-kappa B ligand (RANKL) (denosumab) or to polymerase enzyme (veliparib and olaparib). Among new inhibitors under investigation are poly-ADP ribose polymerase (PARP) inhibitors (veliparib and olaparib) and phosphatidylinositol 3-kinase (PI3K) inhibitor (buparlisib). However, the success of immunotherapies still requires extensive research and additional controlled trials to evaluate the long-term benefits and side effects.


International Journal of Immunopathology and Pharmacology | 2017

Downregulation of L-arginine metabolism in dendritic cells induces tolerance to exogenous antigen

Patricia Ucelli Simioni; Luis Gustavo Romani Fernandes; Wirla M. S. C. Tamashiro

Dendritic cells (DC) are potential tools for therapeutic applications and several strategies to generate tolerogenic DCs are under investigation. When activated by cytokines and microbial products, DCs express mediators that modulate immune responses. In this regard, the metabolites generated by the activities of inducible nitric oxide synthase (iNOS) and arginase in DCs seem to play important roles. Here, we evaluated the effects of adoptive transfer of DCs generated in vitro from bone marrow precursors (BMDC) modulated with L-NAME (Nω-nitro-L-arginine methyl ester) and NOHA (NG-Hydroxy-L-arginine), inhibitors of iNOS and arginase, respectively, upon the immune response of the wild type (BALB/c) and OVA-TCR transgenic (DO11.10) mice. The modulation with L-NAME increased CD86 expression in BMDC, whereas treatment with NOHA increased both CD80 and CD86 expression. Adoptive transfer of either L-NAME- or NOHA-modulated BMDCs to BALB/c mice reduced the plasma levels of ovalbumin-specific antibody as well as proliferation and cytokine secretion in cultures of spleen cells in comparison adoptive transfer of non-modulated DCs. Conversely, transfer of both modulated and non-modulated BMDCs had no effect on immune response of DO11.10 mice. Together, these results show that the treatment with iNOS and Arg inhibitors leads to increased expression of co-stimulatory molecules in DCs, and provides evidences that L-arginine metabolism may be an important therapeutic target for modulating immune responses in inflammatory disorders.

Collaboration


Dive into the Patricia Ucelli Simioni's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dirce Lima Gabriel

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aureo T. Yamada

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E.H. Costa

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar

Julia Bier

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar

C.A. Cecílio

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar

Dl Grabriel

State University of Campinas

View shared research outputs
Researchain Logo
Decentralizing Knowledge