Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patricia Verheugd is active.

Publication


Featured researches published by Patricia Verheugd.


Cell Communication and Signaling | 2013

ARTD10 substrate identification on protein microarrays: regulation of GSK3β by mono-ADP-ribosylation

Karla L. H. Feijs; Henning Kleine; Anne K. Braczynski; Alexandra H. Forst; Nicolas Herzog; Patricia Verheugd; Ulrike Linzen; Elisabeth Kremmer; Bernhard Lüscher

BackgroundAlthough ADP-ribosylation has been described five decades ago, only recently a distinction has been made between eukaryotic intracellular poly- and mono-ADP-ribosylating enzymes. Poly-ADP-ribosylation by ARTD1 (formerly PARP1) is best known for its role in DNA damage repair. Other polymer forming enzymes are ARTD2 (formerly PARP2), ARTD3 (formerly PARP3) and ARTD5/6 (formerly Tankyrase 1/2), the latter being involved in Wnt signaling and regulation of 3BP2. Thus several different functions of poly-ADP-ribosylation have been well described whereas intracellular mono-ADP-ribosylation is currently largely undefined. It is for example not known which proteins function as substrate for the different mono-ARTDs. This is partially due to lack of suitable reagents to study mono-ADP-ribosylation, which limits the current understanding of this post-translational modification.ResultsWe have optimized a novel screening method employing protein microarrays, ProtoArrays®, applied here for the identification of substrates of ARTD10 (formerly PARP10) and ARTD8 (formerly PARP14). The results of this substrate screen were validated using in vitro ADP-ribosylation assays with recombinant proteins. Further analysis of the novel ARTD10 substrate GSK3β revealed mono-ADP-ribosylation as a regulatory mechanism of kinase activity by non-competitive inhibition in vitro. Additionally, manipulation of the ARTD10 levels in cells accordingly influenced GSK3β activity. Together these data provide the first evidence for a role of endogenous mono-ADP-ribosylation in intracellular signaling.ConclusionsOur findings indicate that substrates of ADP-ribosyltransferases can be identified using protein microarrays. The discovered substrates of ARTD10 and ARTD8 provide the first sets of proteins that are modified by mono-ADP-ribosyltransferases in vitro. By studying one of the ARTD10 substrates more closely, the kinase GSK3β, we identified mono-ADP-ribosylation as a negative regulator of kinase activity.


Nature Communications | 2013

Regulation of NF-κB signalling by the mono-ADP-ribosyltransferase ARTD10

Patricia Verheugd; Alexandra H. Forst; Larissa Milke; Nicolas Herzog; Karla L. H. Feijs; Elisabeth Kremmer; Henning Kleine; Bernhard Lüscher

Adenosine diphosphate-ribosylation is a post-translational modification mediated by intracellular and membrane-associated extracellular enzymes and many bacterial toxins. The intracellular enzymes modify their substrates either by poly-ADP-ribosylation, exemplified by ARTD1/PARP1, or by mono-ADP-ribosylation. The latter has been discovered only recently, and little is known about its physiological relevance. The founding member of mono-ADP-ribosyltransferases is ARTD10/PARP10. It possesses two ubiquitin-interaction motifs, a unique feature among ARTD/PARP enzymes. Here, we find that the ARTD10 ubiquitin-interaction motifs bind to K63-linked poly-ubiquitin, a modification that is essential for NF-κB signalling. We therefore studied the role of ARTD10 in this pathway. ARTD10 inhibits the activation of NF-κB and downstream target genes in response to interleukin-1β and tumour necrosis factor-α, dependent on catalytic activity and poly-ubiquitin binding of ARTD10. Mechanistically ARTD10 interferes with poly-ubiquitination of NEMO, which interacts with and is a substrate of ARTD10. Our findings identify a novel regulator of NF-κB signalling and provide evidence for cross-talk between K63-linked poly-ubiquitination and mono-ADP-ribosylation.


FEBS Journal | 2013

Expanding functions of intracellular resident mono-ADP-ribosylation in cell physiology

Karla L. H. Feijs; Patricia Verheugd; Bernhard Lüscher

Poly‐ADP‐ribosylation functions in diverse signaling pathways, such as Wnt signaling and DNA damage repair, where its role is relatively well characterized. Contrarily, mono‐ADP‐ribosylation by for example ARTD10/PARP10 is much less understood. Recent developments hint at the involvement of mono‐ADP‐ribosylation in transcriptional regulation, the unfolded protein response, DNA repair, insulin secretion and immunity. Additionally, macrodomain‐containing hydrolases, MacroD1, MacroD2 and C6orf130/TARG1, have been identified that make mono‐ADP‐ribosylation reversible. Complicating further progress is the lack of tools such as mono‐ADP‐ribose‐specific antibodies. The currently known functions of mono‐ADP‐ribosylation are summarized here, as well as the available tools such as mass spectrometry to study this modification in vitro and in cells.


Cell Communication and Signaling | 2012

Dynamic subcellular localization of the mono-ADP-ribosyltransferase ARTD10 and interaction with the ubiquitin receptor p62

Henning Kleine; Andreas Herrmann; Trond Lamark; Alexandra H. Forst; Patricia Verheugd; Juliane Lüscher-Firzlaff; Barbara E. Lippok; Karla L. H. Feijs; Nicolas Herzog; Elisabeth Kremmer; Terje Johansen; Gerhard Müller-Newen; Bernhard Lüscher

BackgroundADP-ribosylation is a posttranslational modification catalyzed in cells by ADP-ribosyltransferases (ARTD or PARP enzymes). The ARTD family consists of 17 members. Some ARTDs modify their substrates by adding ADP-ribose in an iterative process, thereby synthesizing ADP-ribose polymers, the best-studied example being ARTD1/PARP1. Other ARTDs appear to mono-ADP-ribosylate their substrates and are unable to form polymers. The founding member of this latter subclass is ARTD10/PARP10, which we identified as an interaction partner of the nuclear oncoprotein MYC. Biochemically ARTD10 uses substrate-assisted catalysis to modify its substrates. Our previous studies indicated that ARTD10 may shuttle between the nuclear and cytoplasmic compartments. We have now addressed this in more detail.ResultsWe have characterized the subcellular localization of ARTD10 using live-cell imaging techniques. ARTD10 shuttles between the cytoplasmic and nuclear compartments. When nuclear, ARTD10 can interact with MYC as measured by bimolecular fluorescence complementation. The shuttling is controlled by a Crm1-dependent nuclear export sequence and a central ARTD10 region that promotes nuclear localization. The latter lacks a classical nuclear localization sequence and does not promote full nuclear localization. Rather this non-conventional nuclear localization sequence results in an equal distribution of ARTD10 between the cytoplasmic and the nuclear compartments. ARTD10 forms discrete and dynamic bodies primarily in the cytoplasm but also in the nucleus. These contain poly-ubiquitin and co-localize in part with structures containing the poly-ubiquitin receptor p62/SQSTM1. The co-localization depends on the ubiquitin-associated domain of p62, which mediates interaction with poly-ubiquitin.ConclusionsOur findings demonstrate that ARTD10 is a highly dynamic protein. It shuttles between the nuclear and cytosolic compartments dependent on a classical nuclear export sequence and a domain that mediates nuclear uptake. Moreover ARTD10 forms discrete bodies that exchange subunits rapidly. These bodies associate at least in part with the poly-ubiquitin receptor p62. Because this protein is involved in the uptake of cargo into autophagosomes, our results suggest a link between the formation of ARTD10 bodies and autophagy.Lay abstractPost-translational modifications refer to changes in the chemical appearance of proteins and occur, as the name implies, after proteins have been synthesized. These modifications frequently affect the behavior of proteins, including alterations in their activity or their subcellular localization. One of these modifications is the addition of ADP-ribose to a substrate from the cofactor NAD+. The enzymes responsible for this reaction are ADP-ribosyltransferases (ARTDs or previously named PARPs). Presently we know very little about the role of mono-ADP-ribosylation of proteins that occurs in cells. We identified ARTD10, a mono-ADP-ribosyltransferase, as an interaction partner of the oncoprotein MYC. In this study we have analyzed how ARTD10 moves within a cell. By using different live-cell imaging technologies that allow us to follow the position of ARTD10 molecules over time, we found that ARTD10 shuttles constantly in and out of the nucleus. In the cytosol ARTD10 forms distinct structures or bodies that themselves are moving within the cell and that exchange ARTD10 subunits rapidly. We have identified the regions within ARTD10 that are required for these movements. Moreover we defined these bodies as structures that interact with p62. This protein is known to play a role in bringing other proteins to a structure referred to as the autophagosome, which is involved in eliminating debris in cells. Thus our work suggests that ARTD10 might be involved in and is regulated by ADP-riboslyation autophagosomal processes.


Cells | 2015

Intracellular Mono-ADP-Ribosylation in Signaling and Disease

Mareike Bütepage; Laura Eckei; Patricia Verheugd; Bernhard Lüscher

A key process in the regulation of protein activities and thus cellular signaling pathways is the modification of proteins by post-translational mechanisms. Knowledge about the enzymes (writers and erasers) that attach and remove post-translational modifications, the targets that are modified and the functional consequences elicited by specific modifications, is crucial for understanding cell biological processes. Moreover detailed knowledge about these mechanisms and pathways helps to elucidate the molecular causes of various diseases and in defining potential targets for therapeutic approaches. Intracellular adenosine diphosphate (ADP)-ribosylation refers to the nicotinamide adenine dinucleotide (NAD+)-dependent modification of proteins with ADP-ribose and is catalyzed by enzymes of the ARTD (ADP-ribosyltransferase diphtheria toxin like, also known as PARP) family as well as some members of the Sirtuin family. Poly-ADP-ribosylation is relatively well understood with inhibitors being used as anti-cancer agents. However, the majority of ARTD enzymes and the ADP-ribosylating Sirtuins are restricted to catalyzing mono-ADP-ribosylation. Although writers, readers and erasers of intracellular mono-ADP-ribosylation have been identified only recently, it is becoming more and more evident that this reversible post-translational modification is capable of modulating key intracellular processes and signaling pathways. These include signal transduction mechanisms, stress pathways associated with the endoplasmic reticulum and stress granules, and chromatin-associated processes such as transcription and DNA repair. We hypothesize that mono-ADP-ribosylation controls, through these different pathways, the development of cancer and infectious diseases.


FEBS Journal | 2013

Caspase-dependent cleavage of the mono-ADP-ribosyltransferase ARTD10 interferes with its pro- apoptotic function

Nicolas Herzog; Jörg Hartkamp; Patricia Verheugd; Fabian Treude; Alexandra H. Forst; Karla L. H. Feijs; Barbara E. Lippok; Elisabeth Kremmer; Henning Kleine; Bernhard Lüscher

ADP‐ribosylation is a post‐translational modification that regulates various physiological processes, including DNA damage repair, gene transcription and signal transduction. Intracellular ADP‐ribosyltransferases (ARTDs or PARPs) modify their substrates either by poly‐ or mono‐ADP‐ribosylation. Previously we identified ARTD10 (formerly PARP10) as a mono‐ADP‐ribosyltransferase, and observed that exogenous ARTD10 but not ARTD10‐G888W, a catalytically inactive mutant, interferes with cell proliferation. To expand on this observation, we established cell lines with inducible ARTD10 or ARTD10‐G888W. Consistent with our previous findings, induction of the wild‐type protein but not the mutant inhibited cell proliferation, primarily by inducing apoptosis. During apoptosis, ARTD10 itself was targeted by caspases. We mapped the major cleavage site at EIAMD406↓S, a sequence that was preferentially recognized by caspase–6. Caspase‐dependent cleavage inhibited the pro‐apoptotic activity of ARTD10, as ARTD10(1–406) and ARTD10(407–1025), either alone or together, were unable to induce apoptosis, despite catalytic activity of the latter. Deletion of the N–terminal RNA recognition motif in ARTD10(257–1025) also resulted in loss of pro‐apoptotic activity. Thus our findings indicate that the RNA recognition motif contributes to the pro‐apoptotic effect, together with the catalytic domain. We suggest that these two domains must be physically linked to stimulate apoptosis, possibly targeting ARTD10 through the RNA recognition motif to specific substrates that control cell death. Moreover, we established that knockdown of ARTD10 reduced apoptosis in response to DNA‐damaging agents. Together, these findings indicate that ARTD10 is involved in the regulation of apoptosis, and that, once apoptosis is activated, ARTD10 is cleaved as part of negative feedback regulation.


Scientific Reports | 2017

The conserved macrodomains of the non-structural proteins of Chikungunya virus and other pathogenic positive strand RNA viruses function as mono-ADP-ribosylhydrolases

Laura Eckei; Sarah Krieg; Mareike Bütepage; Anne Lehmann; Annika Gross; Barbara E. Lippok; Alexander R. Grimm; Beate M. Kümmerer; Giulia Rossetti; Bernhard Lüscher; Patricia Verheugd

Human pathogenic positive single strand RNA ((+)ssRNA) viruses, including Chikungunya virus, pose severe health problems as for many neither efficient vaccines nor therapeutic strategies exist. To interfere with propagation, viral enzymatic activities are considered potential targets. Here we addressed the function of the viral macrodomains, conserved folds of non-structural proteins of many (+)ssRNA viruses. Macrodomains are closely associated with ADP-ribose function and metabolism. ADP-ribosylation is a post-translational modification controlling various cellular processes, including DNA repair, transcription and stress response. We found that the viral macrodomains possess broad hydrolase activity towards mono-ADP-ribosylated substrates of the mono-ADP-ribosyltransferases ARTD7, ARTD8 and ARTD10 (aka PARP15, PARP14 and PARP10, respectively), reverting this post-translational modification both in vitro and in cells. In contrast, the viral macrodomains possess only weak activity towards poly-ADP-ribose chains synthesized by ARTD1 (aka PARP1). Unlike poly-ADP-ribosylglycohydrolase, which hydrolyzes poly-ADP-ribose chains to individual ADP-ribose units but cannot cleave the amino acid side chain - ADP-ribose bond, the different viral macrodomains release poly-ADP-ribose chains with distinct efficiency. Mutational and structural analyses identified key amino acids for hydrolase activity of the Chikungunya viral macrodomain. Moreover, ARTD8 and ARTD10 are induced by innate immune mechanisms, suggesting that the control of mono-ADP-ribosylation is part of a host-pathogen conflict.


Hepatology | 2016

IκB kinaseα/β control biliary homeostasis and hepatocarcinogenesis in mice by phosphorylating the cell‐death mediator receptor‐interacting protein kinase 1

Christiane Koppe; Patricia Verheugd; Jérémie Gautheron; Florian Reisinger; Karina Kreggenwinkel; Christoph Roderburg; Luca Quagliata; Luigi Terracciano; Nikolaus Gassler; Rene Tolba; Yannick Boege; Achim Weber; Michael Karin; Mark Luedde; Ulf P. Neumann; Ralf Weiskirchen; Frank Tacke; Mihael Vucur; Christian Trautwein; Bernhard Lüscher; Christian Preisinger; Mathias Heikenwalder; Tom Luedde

The IκB‐Kinase (IKK) complex—consisting of the catalytic subunits, IKKα and IKKβ, as well as the regulatory subunit, NEMO—mediates activation of the nuclear factor κB (NF‐κB) pathway, but previous studies suggested the existence of NF‐κB‐independent functions of IKK subunits with potential impact on liver physiology and disease. Programmed cell death is a crucial factor in the progression of liver diseases, and receptor‐interacting kinases (RIPKs) exerts strategic control over multiple pathways involved in regulating novel programmed cell‐death pathways and inflammation. We hypothesized that RIPKs might be unrecognized targets of the catalytic IKK‐complex subunits, thereby regulating hepatocarcinogenesis and cholestasis. In this present study, mice with specific genetic inhibition of catalytic IKK activity in liver parenchymal cells (LPCs; IKKα/βLPC‐KO) were intercrossed with RIPK1LPC‐KO or RIPK3−/− mice to examine whether RIPK1 or RIPK3 might be downstream targets of IKKs. Moreover, we performed in vivo phospho‐proteome analyses and in vitro kinase assays, mass spectrometry, and mutagenesis experiments. These analyses revealed that IKKα and IKKβ—in addition to their known function in NF‐κB activation—directly phosphorylate RIPK1 at distinct regions of the protein, thereby regulating cell viability. Loss of this IKKα/β‐dependent RIPK1 phosphorylation in LPCs inhibits compensatory proliferation of hepatocytes and intrahepatic biliary cells, thus impeding HCC development, but promoting biliary cell paucity and lethal cholestasis. Conclusions: IKK‐complex subunits transmit a previously unrecognized signal through RIPK1, which is fundamental for the long‐term consequences of chronic hepatic inflammation and might have potential implications for future pharmacological strategies against cholestatic liver disease and cancer. (Hepatology 2016;64:1217‐1231)


Current Protein & Peptide Science | 2016

Players in ADP-ribosylation: Readers and Erasers.

Patricia Verheugd; Mareike Bütepage; Laura Eckei; Bernhard Lüscher

ADP-ribosylation describes an ancient and highly conserved posttranslational modification (PTM) of proteins. Many cellular processes have been identified that are regulated by ADP-ribosylation, including DNA repair, gene transcription and signaling processes. Enzymes catalyzing ADP-ribosylation use NAD+ as a cofactor to transfer ADP-ribose to a substrate under release of nicotinamide. In mammals extracellular and intracellular enzymes have been described. ADP-ribosylation is catalyzed by ADP-ribosyltransferases (ARTs) and some Sirtuins. Extracellular and intracellular ARTs belong to the cholera toxin-like (ARTC) and the diphtheria toxin-like (ARTD) subclass, respectively. ARTDs can be further subdivided depending on their ability to either generate poly-ADP-ribose chains, or to mono-ADP-ribosylate substrates. Similar to the latter, ARTCs and Sirtuins are restricted to mono-ADP-ribosylation. Recent findings have provided information about the functional consequences of ADP-ribosylation. Analogous to other PTMs, ADP-ribosylation can exert allosteric effects on enzymes, thereby controlling their catalytic activity. Moreover, this PTM can be read by multiple protein motifs and domains mediating protein-protein interactions. Typically these readers can distinguish between mono- and poly-ADP-ribosylation. Furthermore, with the description of proteins that can erase ADP-ribosylation, this posttranslational modification is fully reversible and thus provides an additional mechanism to transiently control protein functions and networks. In this review we will describe the most recent findings on motifs and domains that are related to ADP-ribosylation processes with a particular focus on readers and erasers. These new findings provide evidence for broad functional roles of ADP-ribosylation and a high diversity of mechanisms that contribute to the downstream consequences of this modification.


Chemistry & Biology | 2016

Small-Molecule Chemical Probe Rescues Cells from Mono-ADP-Ribosyltransferase ARTD10/PARP10-Induced Apoptosis and Sensitizes Cancer Cells to DNA Damage.

Harikanth Venkannagari; Patricia Verheugd; Jarkko Koivunen; Teemu Haikarainen; Ezeogo Obaji; Yashwanth Ashok; Mohit Narwal; Taina Pihlajaniemi; Bernhard Lüscher; Lari Lehtiö

Members of the human diphtheria toxin-like ADP-ribosyltransferase (ARTD or PARP) family play important roles in regulating biological activities by mediating either a mono-ADP-ribosylation (MARylation) of a substrate or a poly-ADP-ribosylation (PARylation). ARTD10/PARP10 belongs to the MARylating ARTDs (mARTDs) subfamily, and plays important roles in biological processes that range from cellular signaling, DNA repair, and cell proliferation to immune response. Despite their biological and disease relevance, no selective inhibitors for mARTDs are available. Here we describe a small-molecule ARTD10 inhibitor, OUL35, a selective and potent inhibitor for this enzyme. We characterize its selectivity profile, model its binding, and demonstrate activity in HeLa cells where OUL35 rescued cells from ARTD10 induced cell death. Using OUL35 as a cell biology tool we show that ARTD10 inhibition sensitizes the cells to the hydroxyurea-induced genotoxic stress. Our study supports the proposed role of ARTD10 in DNA-damage repair and provides a tool compound for selective inhibition of ARTD10-mediated MARylation.

Collaboration


Dive into the Patricia Verheugd's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laura Eckei

RWTH Aachen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elisabeth Kremmer

German Center for Neurodegenerative Diseases

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giulia Rossetti

Forschungszentrum Jülich

View shared research outputs
Researchain Logo
Decentralizing Knowledge