Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patricia Y. W. Dankers is active.

Publication


Featured researches published by Patricia Y. W. Dankers.


Journal of the American Chemical Society | 2014

Tough stimuli-responsive supramolecular hydrogels with hydrogen-bonding network junctions.

Mingyu Guo; Louis M. Pitet; Hans M. Wyss; Matthijn R. J. Vos; Patricia Y. W. Dankers; E. W. Meijer

Hydrogels were prepared with physical cross-links comprising 2-ureido-4[1H]-pyrimidinone (UPy) hydrogen-bonding units within the backbone of segmented amphiphilic macromolecules having hydrophilic poly(ethylene glycol) (PEG). The bulk materials adopt nanoscopic physical cross-links composed of UPy-UPy dimers embedded in segregated hydrophobic domains dispersed within the PEG matrix as comfirmed by cryo-electron microscopy. The amphiphilic network was swollen with high weight fractions of water (w(H2O) ≈ 0.8) owing to the high PEG weight fraction within the pristine polymers (w(PEG) ≈ 0.9). Two different PEG chain lengths were investigated and illustrate the corresponding consequences of cross-link density on mechanical properties. The resulting hydrogels exhibited high strength and resilience upon deformation, consistent with a microphase separated network, in which the UPy-UPy interactions were adequately shielded within hydrophobic nanoscale pockets that maintain the network despite extensive water content. The cumulative result is a series of tough hydrogels with tunable mechanical properties and tractable synthetic preparation and processing. Furthermore, the melting transition of PEG in the dry polymer was shown to be an effective stimulus for shape memory behavior.


Advanced Materials | 2012

Hierarchical Formation of Supramolecular Transient Networks in Water : A Modular Injectable Delivery System

Patricia Y. W. Dankers; Thomas M. Hermans; Travis W. Baughman; Yuko Kamikawa; Roxanne E. Kieltyka; Maartje M. C. Bastings; Henk M. Janssen; Nico A. J. M. Sommerdijk; Antje Larsen; Marja J. A. van Luyn; Anton Willem Bosman; Eliane R. Popa; George Fytas; E. W. Meijer

A modular one-component supramolecular transient network in water, based on poly(ethylene glycol) and end-capped with four-fold hydrogen bonding units, is reported. Due to its nonlinear structural formation, this system allows active proteins to be added to the hydrogel during formation. Once implanted in vivo it releases the protein by erosion of both the protein and polymer via dissolution.


Advanced Healthcare Materials | 2014

A Fast pH‐Switchable and Self‐Healing Supramolecular Hydrogel Carrier for Guided, Local Catheter Injection in the Infarcted Myocardium

Maartje M. C. Bastings; Stefan Koudstaal; Roxanne E. Kieltyka; Yoko Nakano; A. C. H. Pape; Dries Feyen; Frebus J. van Slochteren; Pieter A. Doevendans; Joost P.G. Sluijter; E. W. Meijer; Steven A. J. Chamuleau; Patricia Y. W. Dankers

Minimally invasive intervention strategies after myocardial infarction use state-of-the-art catheter systems that are able to combine mapping of the infarcted area with precise, local injection of drugs. To this end, catheter delivery of drugs that are not immediately pumped out of the heart is still challenging, and requires a carrier matrix that in the solution state can be injected through a long catheter, and instantaneously gelates at the site of injection. To address this unmet need, a pH-switchable supramolecular hydrogel is developed. The supramolecular hydrogel is switched into a liquid at pH > 8.5, with a viscosity low enough to enable passage through a 1-m long catheter while rapidly forming a hydrogel in contact with tissue. The hydrogel has self-healing properties taking care of adjustment to the injection site. Growth factors are delivered from the hydrogel thereby clearly showing a reduction of infarct scar in a pig myocardial infarction model.


Biomaterials | 2011

Bioengineering of living renal membranes consisting of hierarchical, bioactive supramolecular meshes and human tubular cells

Patricia Y. W. Dankers; Jasper M. Boomker; Ali Huizinga-van der Vlag; Eva Wisse; Wilco P. J. Appel; Frank M. M. Smedts; Martin C. Harmsen; Anton Willem Bosman; W. Meijer; Maria J. A. van Luyn

Maintenance of polarisation of epithelial cells and preservation of their specialized phenotype are great challenges for bioengineering of epithelial tissues. Mimicking the basement membrane and underlying extracellular matrix (ECM) with respect to its hierarchical fiber-like morphology and display of bioactive signals is prerequisite for optimal epithelial cell function in vitro. We report here on a bottom-up approach based on hydrogen-bonded supramolecular polymers and ECM-peptides to make an electro-spun, bioactive supramolecular mesh which can be applied as synthetic basement membrane. The supramolecular polymers used, self-assembled into nano-meter scale fibers, while at micro-meter scale fibers were formed by electro-spinning. We introduced bioactivity into these nano-fibers by intercalation of different ECM-peptides designed for stable binding. Living kidney membranes were shown to be bioengineered through culture of primary human renal tubular epithelial cells on these bioactive meshes. Even after a long-term culturing period of 19 days, we found that the cells on bioactive membranes formed tight monolayers, while cells on non-active membranes lost their monolayer integrity. Furthermore, the bioactive membranes helped to support and maintain renal epithelial phenotype and function. Thus, incorporation of ECM-peptides into electro-spun meshes via a hierarchical, supramolecular method is a promising approach to engineer bioactive synthetic membranes with an unprecedented structure. This approach may in future be applied to produce living bioactive membranes for a bio-artificial kidney.


American Journal of Physiology-renal Physiology | 2009

Endothelial progenitor cell dysfunction in patients with progressive chronic kidney disease

Guido Krenning; Patricia Y. W. Dankers; Johannes W. Drouven; Femke Waanders; Casper F. M. Franssen; Marja J. A. van Luyn; Martin C. Harmsen; Eliane R. Popa

Endothelial progenitor cells (EPC) contribute to repair and maintenance of the vascular system, but in patients with chronic kidney disease (CKD), the number and function of EPC may be affected by kidney dysfunction. We assessed numbers and the angiogenic function of EPC from patients with CKD in relation to disease progression. In a cross-sectional, prospective study, 50 patients with varying degrees of CKD, including 20 patients undergoing dialysis and 10 healthy controls, were included. Mononuclear cells were isolated, and circulating EPC were quantified by flow cytometry based on expression of CD14 and CD34. EPC were cultured on fibronectin-coated supramolecular films of oligocaprolactone under angiogenic conditions to determine their angiogenic capacity and future use in regenerative medicine. CKD patients had normal numbers of circulating CD14+ EPC but reduced numbers of circulating CD34+ EPC. Furthermore, EPC from patients with CKD displayed functional impairments, i.e., hampered adherence, reduced endothelial outgrowth potential, and reduced antithrombogenic function. These impairments were already observed at stage 1 CKD and became more apparent when CKD progressed. Dialysis treatment only partially ameliorated EPC impairments in patients with CKD. In conclusion, EPC number and function decrease with advancing CKD, which may hamper physiological vascular repair and can add to the increased risk for cardiovascular diseases observed in CKD patients.


Journal of the American Chemical Society | 2013

Mesoscale Modulation of Supramolecular Ureidopyrimidinone-Based Poly(ethylene glycol) Transient Networks in Water

Roxanne E. Kieltyka; A. C. H. Pape; Lorenzo Albertazzi; Yoko Nakano; Maartje M. C. Bastings; Ilja K. Voets; Patricia Y. W. Dankers; E. W. Meijer

In natural systems, highly synergistic non-covalent interactions among biomolecular components exert mesoscopic control over hierarchical assemblies. We herein present a multicomponent self-assembly strategy to tune hierarchical supramolecular polymer architectures in water using highly affine and directional ureidopyrimidinone-poly(ethylene glycol)s (UPy-PEG). Using scattering methods and oscillatory rheology, we observe the structural and mechanical regulation of entangled monofunctional UPy-PEG fibrils by cross-linking bifunctional UPy-PEG fibrils. This supramolecular mixing approach opens the door to a range of subtly distinct materials for chemical and biological applications.


Biomaterials | 2012

Development and in-vivo characterization of supramolecular hydrogels for intrarenal drug delivery

Patricia Y. W. Dankers; Marja J. A. van Luyn; Ali Huizinga-van der Vlag; Gaby Maria Leonarda Van Gemert; Arjen H. Petersen; E. W. Meijer; Henk M. Janssen; Anton Willem Bosman; Eliane R. Popa

Intrarenal drug delivery from a hydrogel carrier implanted under the kidney capsule is an innovative way to induce kidney tissue regeneration and/or prevent kidney inflammation or fibrosis. We report here on the development of supramolecular hydrogels for this application. We have synthesized two types of supramolecular hydrogelators by connecting the hydrogen bonding moieties to poly(ethylene glycols) in two different ways in order to obtain hydrogels with different physico-chemical properties. Chain-extended hydrogelators containing hydrogen bonding units in the main chain, and bifunctional hydrogelators end-functionalized with hydrogen bonding moieties, were made. The influence of these hydrogels on the renal cortex when implanted under the kidney capsule was studied. The overall tissue response to these hydrogels was found to be mild, and minimal damage to the cortex was observed, using the infiltration of macrophages, formation of myofibroblasts, and the deposition of collagen III as relevant read-out parameters. Differences in tissue response to these hydrogels could be related to the different physico-chemical properties of the three hydrogels. The strong, flexible and slow eroding chain-extended hydrogels are proposed to be suitable for long-term intrarenal delivery of organic drugs, while the weaker, soft and fast eroding bifunctional hydrogel is eminently suitable for short-term, fast delivery of protein drugs to the kidney cortex. The favourable biological behaviour of the supramolecular hydrogels makes them exquisite candidates for subcapsular drug delivery, and paves the way to various opportunities for intrarenal therapy.


Macromolecular Bioscience | 2010

The Use of Fibrous, Supramolecular Membranes and Human Tubular Cells for Renal Epithelial Tissue Engineering: Towards a Suitable Membrane for a Bioartificial Kidney

Patricia Y. W. Dankers; Jasper M. Boomker; Ali Huizinga-van der Vlag; Frank M. M. Smedts; Martin C. Harmsen; Marja J. A. van Luyn

A bioartificial kidney, which is composed of a membrane cartridge with renal epithelial cells, can substitute important kidney functions in patients with renal failure. A particular challenge is the maintenance of monolayer integrity and specialized renal epithelial cell functions ex vivo. We hypothesized that this can be improved by electro-spun, supramolecular polymer membranes which show clear benefits in ease of processability. We found that after 7 d, in comparison to conventional microporous membranes, renal tubular cells cultured on top of our fibrous supramolecular membranes formed polarized monolayers, which is prerequisite for a well-functioning bioartificial kidney. In future, these supramolecular membranes allow for incorporation of peptides that may increase cell function even further.


Analytical Chemistry | 2010

TOF-Secondary Ion Mass Spectrometry Imaging of Polymeric Scaffolds with Surrounding Tissue after in Vivo Implantation

Leendert A. Klerk; Patricia Y. W. Dankers; Eliane R. Popa; Anton Willem Bosman; Marjolein E. Sanders; Kris A. Reedquist; Ron M. A. Heeren

Supramolecular polymeric materials are of increasing interest for the use as drug delivery carriers. A thorough insight in the biocompatibility and the degradation of these materials in vivo are of fundamental importance to further their development and application in medical practice. Molecular imaging techniques are powerful tools that enable the elucidation of molecular distributions in and around such polymer implants. A supramolecular polymeric hydrogel was implanted under the renal capsule to study its biocompatibility with TOF-SIMS. This results in a molecular cartography of the polymer implant combined with the cellular signature of the implantation environment. In this experiment, molecular signals are observed from cells that are involved in the biological response to the implant, e.g., macrophages. These molecular signatures are compared with macrophage standards cultured in different polarization environments. On the basis of this comparison, information can be acquired on the various macrophage differentiations that are connected to different stages in the foreign body response. Mass spectrometric imaging techniques offer the opportunity to visualize different histological phenomena in a single experiment without the need for specific immunohistochemical markers. Cellular infiltration into the polymer is visualized, offering a clear view on both biological and polymer features in a single imaging experiment.


Journal of Materials Chemistry B | 2014

A modular approach to easily processable supramolecular bilayered scaffolds with tailorable properties

Björne B. Mollet; Marta Comellas-Aragonès; A. J. H. Spiering; Serge H. M. Söntjens; E. W. Meijer; Patricia Y. W. Dankers

Engineering of anisotropic tissues demands extracellular matrix (ECM) mimicking scaffolds with an asymmetric distribution of functionalities. We here describe a convenient, modular approach based on supramolecular building blocks to form electrospun bilayered scaffolds with tailorable properties. Polymers and peptides functionalized with hydrogen-bonding ureido-pyrimidinone (UPy) moieties can easily be mixed-and-matched to explore new material combinations with optimal properties. These combinatorial supramolecular biomaterials, processed by electrospinning, enable the formation of modular fibrous scaffolds. We demonstrate how UPy-functionalized polymers based on polycaprolactone and poly(ethylene glycol) enable us to unite both cell-adhesive and non-cell adhesive characters into a single electrospun bilayered scaffold. We furthermore show that the non-cell adhesive layer can be bioactivated and made adhesive for kidney epithelial cells by the incorporation of 4 mol% of UPy-modified Arg-Gly-Asp (RGD) peptide in the electrospinning solution. These findings show that the UPy-based supramolecular biomaterial system offers a versatile toolbox to form modular multilayered scaffolds for tissue engineering and regenerative medicine applications such as the formation of membranes for a living bioartificial kidney.

Collaboration


Dive into the Patricia Y. W. Dankers's collaboration.

Top Co-Authors

Avatar

E. W. Meijer

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar

Anton Willem Bosman

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar

Marja J. A. van Luyn

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Carlijn Carlijn Bouten

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar

Eva Wisse

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar

Maartje M. C. Bastings

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar

A. J. H. Spiering

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar

Eliane R. Popa

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Maarten H. Bakker

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar

Martin C. Harmsen

University Medical Center Groningen

View shared research outputs
Researchain Logo
Decentralizing Knowledge