Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patricia Zancan is active.

Publication


Featured researches published by Patricia Zancan.


Biochemical Journal | 2007

Lactate favours the dissociation of skeletal muscle 6-phosphofructo-1- kinase tetramers down-regulating the enzyme and muscle glycolysis

Tiago Costa Leite; Daniel Da Silva; Raquel Guimarães Coelho; Patricia Zancan; Mauro Sola-Penna

For a long period lactate was considered as a dead-end product of glycolysis in many cells and its accumulation correlated with acidosis and cellular and tissue damage. At present, the role of lactate in several physiological processes has been investigated based on its properties as an energy source, a signalling molecule and as essential for tissue repair. It is noteworthy that lactate accumulation alters glycolytic flux independently from medium acidification, thereby this compound can regulate glucose metabolism within cells. PFK (6-phosphofructo-1-kinase) is the key regulatory glycolytic enzyme which is regulated by diverse molecules and signals. PFK activity is directly correlated with cellular glucose consumption. The present study shows the property of lactate to down-regulate PFK activity in a specific manner which is not dependent on acidification of the medium. Lactate reduces the affinity of the enzyme for its substrates, ATP and fructose 6-phosphate, as well as reducing the affinity for ATP at its allosteric inhibitory site at the enzyme. Moreover, we demonstrated that lactate inhibits PFK favouring the dissociation of enzyme active tetramers into less active dimers. This effect can be prevented by tetramer-stabilizing conditions such as the presence of fructose 2,6-bisphosphate, the binding of PFK to f-actin and phosphorylation of the enzyme by protein kinase A. In conclusion, our results support evidence that lactate regulates the glycolytic flux through modulating PFK due to its effects on the enzyme quaternary structure.


Biochemical Pharmacology | 2009

Acetylsalicylic acid and salicylic acid decrease tumor cell viability and glucose metabolism modulating 6-phosphofructo-1-kinase structure and activity

Guilherme A. Spitz; Cristiane M. Furtado; Mauro Sola-Penna; Patricia Zancan

The common observation that cancer cells present higher glycolytic rates when compared to control cells leads to the proposal of glycolysis as a potential target for the development of anti-tumoral agents. Anti-inflammatory drugs, such as acetylsalicylic acid (ASA) and salicylic acid (SA), present anti-tumoral properties, inducing apoptosis and altering tumor glucose utilization. The present work aims at evaluating whether ASA could directly decrease cell glycolysis through inhibition of the major regulatory enzyme within this pathway, 6-phosphofructo-1-kinase (PFK). We show that ASA and SA inhibit purified PFK in a dose-dependent manner, and that this inhibition occurs due to the modulation of the enzyme quaternary structure. ASA and SA promote the dissociation of the enzyme active tetramers into quite inactive dimers, a common regulatory mechanism of this enzyme. The inhibitory effects of ASA and SA on PFK are fully reversible and can be prevented or reverted by the binding of the enzyme to the actin filaments. Both drugs are also able to decrease glucose consumption by human breast cancer cell line MCF-7, as well as its viability, which decrease parallelly to the inhibition of PFK on these cells. In the end, we demonstrate the ability of ASA and SA to directly modulate an important regulatory intracellular enzyme, and propose that this is one of their mechanisms promoting anti-tumoral effects.


Iubmb Life | 2010

Regulation of mammalian muscle type 6‐phosphofructo‐1‐kinase and its implication for the control of the metabolism

Mauro Sola-Penna; Daniel Da Silva; Wagner Santos Coelho; Monica M. Marinho-Carvalho; Patricia Zancan

Phosphofructokinase (PFK) is a major regulatory glycolytic enzyme and is considered to be the pacemaker of glycolysis. This enzyme presents a puzzling regulatory mechanism that is modulated by a large variety of metabolites, drugs, and intracellular proteins. To date, the mammalian enzyme structure has not yet been resolved. However, it is known that PFK undergoes an intricate oligomerization process, shifting among monomers, dimers, tetramers, and more complex oligomeric structures. The equilibrium between PFK dimers and tetramers is directly correlated with the enzyme regulation, because the dimer exhibits very low catalytic activity, whereas the tetramer is fully active. Several PFK ligands modulate the enzyme, favoring the formation of its dimers or tetramers. The present review integrates recent findings regarding the regulatory aspects of muscle type PFK and discusses their relation to the control of metabolism.


PLOS ONE | 2012

Clotrimazole Preferentially Inhibits Human Breast Cancer Cell Proliferation, Viability and Glycolysis

Cristiane M. Furtado; Mariah C. Marcondes; Mauro Sola-Penna; Maisa L. S. de Souza; Patricia Zancan

Background Clotrimazole is an azole derivative with promising anti-cancer effects. This drug interferes with the activity of glycolytic enzymes altering their cellular distribution and inhibiting their activities. The aim of the present study was to analyze the effects of clotrimazole on the growth pattern of breast cancer cells correlating with their metabolic profiles. Methodology/Principal Findings Three cell lines derived from human breast tissue (MCF10A, MCF-7 and MDA-MB-231) that present increasingly aggressive profiles were used. Clotrimazole induces a dose-dependent decrease in glucose uptake in all three cell lines, with Ki values of 114.3±11.7, 77.1±7.8 and 37.8±4.2 µM for MCF10A, MCF-7 and MDA-MB-231, respectively. Furthermore, the drug also decreases intracellular ATP content and inhibits the major glycolytic enzymes, hexokinase, phosphofructokinase-1 and pyruvate kinase, especially in the highly metastatic cell line, MDA-MB-231. In this last cell lineage, clotrimazole attenuates the robust migratory response, an effect that is progressively attenuated in MCF-7 and MCF10A, respectively. Moreover, clotrimazole reduces the viability of breast cancer cells, which is more pronounced on MDA-MB-231. Conclusions/Significance Clotrimazole presents deleterious effects on two human breast cancer cell lines metabolism, growth and migration, where the most aggressive cell line is more affected by the drug. Moreover, clotrimazole presents little or no effect on a non-tumor human breast cell line. These results suggest, at least for these three cell lines studied, that the more aggressive the cell is the more effective clotrimazole is.


Molecular Genetics and Metabolism | 2010

Differential expression of phosphofructokinase-1 isoforms correlates with the glycolytic efficiency of breast cancer cells

Patricia Zancan; Mauro Sola-Penna; Cristiane M. Furtado; Daniel Da Silva

Cancer cells are characterized by increased aerobic glycolysis, which correlates with a negative prognosis. Although this correlation is well known, the mechanism of the elevated rate of glycolysis in cancer and the role of glycolytic enzymes have yet to be determined. The present work aims to evaluate the activity of the major enzymes that regulate glycolysis in breast cancer cell lines of varying aggressiveness. MCF10A, MCF-7 and MDA-mb-231 are human breast-derived cell lines with non-tumorigenic, tumorigenic and metastatic profiles, respectively. These cell lines have increasing degrees of glycolytic efficiency, i.e., lactate produced per glucose consumed, corresponding to their metastatic potential. Although, there are no differences in phosphofructokinase (PFK) or pyruvate kinase (PK) activities, the activity of hexokinase (HK) activity is higher in both tumorigenic cell lines compared to MCF10A cells. No difference in HK activity is observed between MCF-7 and MDA-mb-231 cells, suggesting that the difference in their glycolytic efficiency could not be attributed to this enzyme. However, we find that expression of the PFK-L isoform directly and strongly correlates with aggressiveness and glycolytic efficiency in these cell lines. Thus, we conclude that glycolytic efficiency, which is important for the survival of cancer cells, depends primarily on the preferential expression of PFK-L over the M and P isoforms.


Biochimie | 2013

Resveratrol decreases breast cancer cell viability and glucose metabolism by inhibiting 6-phosphofructo-1-kinase

Lilian S. Gomez; Patricia Zancan; Mariah C. Marcondes; Livia Ramos-Santos; José Roberto Meyer-Fernandes; Mauro Sola-Penna; Daniel Da Silva

Cancer cells are highly dependent on glycolysis to supply the energy and intermediates required for cell growth and proliferation. The enzyme 6-phosphofructo-1-kinase (PFK) is critical for glycolysis, and its activity is directly correlated with cellular glucose consumption. Resveratrol is a potential anti-tumoral drug that decreases glucose metabolism and viability in cancer cells. However, the mechanism involved in resveratrol-mediated anti-tumor activity is not entirely clear. In this work, it is demonstrated that resveratrol decreases viability, glucose consumption and ATP content in the human breast cancer cell line MCF-7. These effects are directly correlated with PFK inhibition by resveratrol in these cells. Moreover, resveratrol directly inhibits purified PFK, promoting the dissociation of the enzyme from fully active tetramers into less active dimers. This effect is exacerbated by known negative regulators of the enzyme, such as ATP and citrate. On the other hand, positive modulators that stabilize the tetrameric form of the enzyme, such as fructose-2,6-bisphosphate and ADP, prevent the inhibition of PFK activity by resveratrol, an effect not observed with increased pH. In summary, our results provide evidence that resveratrol directly inhibits PFK activity, therefore disrupting glucose metabolism and reducing viability in cancer cells.


Biochimie | 2010

Filamentous actin and its associated binding proteins are the stimulatory site for 6-phosphofructo-1-kinase association within the membrane of human erythrocytes.

Antonio Real-Hohn; Patricia Zancan; Daniel Da Silva; Eliane R. Martins; Leonardo T. Salgado; Claudia Mermelstein; Andre M. O. Gomes; Mauro Sola-Penna

Glycolytic enzymes reversibly associate with the human erythrocyte membrane (EM) as part of their regulatory mechanism. The site for this association has been described as the amino terminus of band 3, a transmembrane anion transporter. Binding of glycolytic enzymes to this site is recognized to inhibit glycolysis, since binding inhibits the catalytic activity of these enzymes, including the rate-limiting enzyme 6-phosphofructo-1-kinase (PFK). However, the existence of a putative stimulatory site for glycolytic enzymes within the EM has been proposed. PFK has been described as able to reversibly associate with other proteins, such as microtubules, which inhibit the enzyme, and filamentous actin, which activates the enzyme. Here, it is demonstrated that PFK also binds to actin filaments and its associated binding proteins in the protein meshwork that forms the erythrocyte cytoskeleton. Through fluorescence resonance energy transfer experiments using either confocal microscopy or fluorescence spectroscopy, we show that, within the EM, PFK and actin filaments containing its associated binding proteins are located close enough to propose binding between them. Moreover, specifically blocking PFK binding to band 3 results in an association of the enzyme with the EM that increases the enzymes catalytic activity. Conversely, disruption of the association between PFK and actin filaments containing its associated binding proteins potentiates the inhibitory action of the EM on the enzyme. Furthermore, it is shown that insulin signaling increases the association of PFK to actin filaments and its associated binding proteins, revealing that this event may play a role on the stimulatory effects of insulin on erythrocyte glycolysis. In summary, the present work presents evidence that filamentous actin and its associated binding proteins are the stimulatory site for PFK within the EM.


Biochimica et Biophysica Acta | 2009

Calmodulin upregulates skeletal muscle 6-phosphofructo-1-kinase reversing the inhibitory effects of allosteric modulators

Monica M. Marinho-Carvalho; Pedro Victor Costa-Mattos; Guilherme A. Spitz; Patricia Zancan; Mauro Sola-Penna

6-phosphofructo-1-kinase (PFK) is a calmodulin (CaM)-binding protein that plays a key role on the regulation of glycolysis. Each PFK monomer binds two CaM molecules inducing the dissociation of the active tetrameric conformation of the enzyme into dimers, thus inhibiting it. Recently, we have reported that the binding of one CaM per PFK monomer promotes the dimerization of the enzyme although maintaining its full catalytic activity. The present work aims to understand the regulatory role of these active PFK dimers induced by CaM. We show that the inhibition of PFK activity by ATP (>1 mM) is abolished in the presence of CaM. CaM decreases the affinity of PFK for its substrates, fructose-6-phophate and ATP. Moreover, CaM activates PFK in the presence of citrate and lactate, two inhibitory metabolites that induce the dimerization of PFK tetramers, as well as potentiate the stimulatory action of ADP and fructose-2,6-bisphosphate. Under all the conditions tested CaM induces the formation of PFK dimers, supporting that these CaM-bound dimers are active and less susceptible to inhibition by allosteric ligands. In the end, we suggest that CaM binding to PFK, which is stimulated by Ca(2+), represents an important way to increase the glycolytic pathway in cells.


Archives of Biochemistry and Biophysics | 2010

Metformin reverses hexokinase and 6-phosphofructo-1-kinase inhibition in skeletal muscle, liver and adipose tissues from streptozotocin-induced diabetic mouse.

Daniel Da Silva; Patricia Zancan; Wagner Santos Coelho; Lilian S. Gomez; Mauro Sola-Penna

The present work describes the effects of metformin on hexokinase (HK) and phosphofructokinase (PFK) activities and localization in different tissues from streptozotocin-induced diabetic mice. Diabetic mice present lower HK and PFK activities (50%) in skeletal muscle, liver and adipose tissue, as compared with control (P<0.05). Treatment with 250 mg/kg metformin reverses this pattern of enzyme inhibition with concomitant reversal of hyperglycemia and hypolactacidemia. Furthermore, the treatment increases the cytoskeleton-associated PFK activity in skeletal muscle; this activity has been described as an important mechanism for the enzyme activation. This effect might be due to the increased phosphorylation of serine residues in the enzyme, a modification which has been described to increase the interaction of PFK with f-actin. The current work supports the hypothesis that metformin hypoglycemic effects involve the activation of glycolysis through its regulatory enzymes, which may be potential targets for the development of new hypoglycemic drugs.


Iubmb Life | 2008

ATP and fructose-2,6-bisphosphate regulate skeletal muscle 6-phosphofructo-1-kinase by altering its quaternary structure.

Patricia Zancan; Monica M. Marinho-Carvalho; Joana Faber-Barata; João M.M. Dellias; Mauro Sola-Penna

Recently, it has been demonstrated that fructose‐2,6‐bisphosphate (F2,6BP) protects skeletal muscle 6‐phosphofructo‐1‐kinase (PFK) from thermal inactivation (50 °C) and against the deleterious effects of guanidinium hydrochloride (GdmCl). On the other hand, ATP, when added at its inhibitory concentrations, that is, >1 mM, enhanced either the thermal‐ or GdmCl‐induced inactivation of PFK. Moreover, we concluded that these phenomena were probably due to the stabilization of PFK tetrameric structure by F2,6BP, and the dissociation of this structure into dimers induced by ATP. Aimed at elucidating the effects of F2,6BP and ATP on PFK at the structural and functional levels, the present work correlates the effects of these metabolites on the equilibrium between PFK dimers and tetramers to the regulation promoted on the enzyme catalytic activity. We show that ATP present a dual effect on PFK structure, favoring the formation of tetramer at stimulatory concentrations (up to 1 mM), and dissociating tetramers into dimers at inhibitory concentrations (>1 mM). Furthermore, F2,6BP counteracted this later ATP effect at either the structural or catalytic levels. Additionally, the effects of both F2,6BP or ATP on the equilibrium between PFK tetramers and dimers and on the enzyme activity presented a striking parallelism. Therefore, we concluded that modulation of PFK activity by ATP and F2,6BP is due to the effects of these ligands on PFK quaternary structure, altering the oligomeric equilibrium between PFK tetramers and dimers.

Collaboration


Dive into the Patricia Zancan's collaboration.

Top Co-Authors

Avatar

Mauro Sola-Penna

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Mariah C. Marcondes

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Daniel Da Silva

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Monica M. Marinho-Carvalho

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Carla Holandino

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Wagner Santos Coelho

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Cristiane M. Furtado

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Lilian S. Gomez

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Priscila Ausina

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Venicio Feo da Veiga

Federal University of Rio de Janeiro

View shared research outputs
Researchain Logo
Decentralizing Knowledge