Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patricio Fernández-Silva is active.

Publication


Featured researches published by Patricio Fernández-Silva.


Science | 2013

Supercomplex Assembly Determines Electron Flux in the Mitochondrial Electron Transport Chain

Esther Lapuente-Brun; Raquel Moreno-Loshuertos; Rebeca Acín-Pérez; Ana Latorre-Pellicer; Carmen Colás; Eduardo Balsa; Ester Perales-Clemente; Pedro M. Quirós; Enrique Calvo; M. A. C. Rodríguez-Hernández; Plácido Navas; Raquel Cruz; Angel Carracedo; Carlos López-Otín; Acisclo Pérez-Martos; Patricio Fernández-Silva; Erika Fernandez-Vizarra; José Antonio Enríquez

Respiration Refined Cells derive energy from redox reactions mediated by mitochondrial enzymes that form the electron transport chain. The enzymes can form large complexes, known as supercomplexes, whose function has been controversial. Lapuente-Brun et al. (p. 1567) discovered that a mouse protein, supercomplex assembly factor I (SCAFI), specifically modulates assembly of respiratory complexes into supercomplexes. Formation of the supercomplexes appears to cause electrons to be processed differently, depending on the substrate from which they are derived. Ordered formation of supercomplexes of respiratory enzymes influences metabolic efficiency in response to food supply. The textbook description of mitochondrial respiratory complexes (RCs) views them as free-moving entities linked by the mobile carriers coenzyme Q (CoQ) and cytochrome c (cyt c). This model (known as the fluid model) is challenged by the proposal that all RCs except complex II can associate in supercomplexes (SCs). The proposed SCs are the respirasome (complexes I, III, and IV), complexes I and III, and complexes III and IV. The role of SCs is unclear, and their existence is debated. By genetic modulation of interactions between complexes I and III and III and IV, we show that these associations define dedicated CoQ and cyt c pools and that SC assembly is dynamic and organizes electron flux to optimize the use of available substrates.


Molecular Cell | 2008

Respiratory active mitochondrial supercomplexes.

Rebeca Acín-Pérez; Patricio Fernández-Silva; Maria Luisa Peleato; Acisclo Pérez-Martos; José Antonio Enríquez

The structural organization of the mitochondrial respiratory complexes as four big independently moving entities connected by the mobile carriers CoQ and cytochrome c has been challenged recently. Blue native gel electrophoresis reveals the presence of high-molecular-weight bands containing several respiratory complexes and suggesting an in vivo assembly status of these structures (respirasomes). However, no functional evidence of the activity of supercomplexes as true respirasomes has been provided yet. We have observed that (1) supercomplexes are not formed when one of their component complexes is absent; (2) there is a temporal gap between the formation of the individual complexes and that of the supercomplexes; (3) some putative respirasomes contain CoQ and cytochrome c; (4) isolated respirasomes can transfer electrons from NADH to O(2), that is, they respire. Therefore, we have demonstrated the existence of a functional respirasome and propose a structural organization model that accommodates these findings.


Cell | 2013

Mitochondrial Cristae Shape Determines Respiratory Chain Supercomplexes Assembly and Respiratory Efficiency

Sara Cogliati; Christian Frezza; Maria Eugenia Soriano; Tatiana Varanita; Rubén Quintana-Cabrera; Mauro Corrado; Sara Cipolat; Veronica Costa; Alberto Casarin; Ligia C. Gomes; Ester Perales-Clemente; Leonardo Salviati; Patricio Fernández-Silva; José Antonio Enríquez; Luca Scorrano

Summary Respiratory chain complexes assemble into functional quaternary structures called supercomplexes (RCS) within the folds of the inner mitochondrial membrane, or cristae. Here, we investigate the relationship between respiratory function and mitochondrial ultrastructure and provide evidence that cristae shape determines the assembly and stability of RCS and hence mitochondrial respiratory efficiency. Genetic and apoptotic manipulations of cristae structure affect assembly and activity of RCS in vitro and in vivo, independently of changes to mitochondrial protein synthesis or apoptotic outer mitochondrial membrane permeabilization. We demonstrate that, accordingly, the efficiency of mitochondria-dependent cell growth depends on cristae shape. Thus, RCS assembly emerges as a link between membrane morphology and function.


Molecular Cell | 2004

Respiratory Complex III Is Required to Maintain Complex I in Mammalian Mitochondria

Rebeca Acín-Pérez; María Pilar Bayona-Bafaluy; Patricio Fernández-Silva; Raquel Moreno-Loshuertos; Acisclo Pérez-Martos; Claudio Bruno; Carlos T. Moraes; José Antonio Enríquez

A puzzling observation in patients with oxidative phosphorylation (OXPHOS) deficiencies is the presence of combined enzyme complex defects associated with a genetic alteration in only one protein-coding gene. In particular, mutations in the mtDNA encoded cytochrome b gene are associated either with combined complex I+III deficiency or with only complex III deficiency. We have reproduced the combined complex I+III defect in mouse and human cultured cell models harboring cytochrome b mutations. In both, complex III assembly is impeded and causes a severe reduction in the amount of complex I, not observed when complex III activity was pharmacologically inhibited. Metabolic labeling in mouse cells revealed that complex I was assembled, although its stability was severely hampered. Conversely, complex III stability was not influenced by the absence of complex I. This structural dependence among complexes I and III was confirmed in a muscle biopsy of a patient harboring a nonsense cytochrome b mutation.


Experimental Physiology | 2003

Replication and transcription of mammalian mitochondrial DNA.

Patricio Fernández-Silva; José Antonio Enríquez; Julio Montoya

Mitochondria are subcellular organelles, devoted mainly to energy production in the form of ATP, that contain their own genetic system. Mitochondrial DNA codifies a small, but essential number of polypeptides of the oxidative phosphorylation system. The mammalian mitochondrial genome is an example of extreme economy showing a compact gene organization. The coding sequences for two ribosomal RNAs (rRNAs), 22 transfer RNAs (tRNAs) and 13 polypeptides are contiguous and without introns. The tRNAs are regularly interspersed between the rRNA and protein‐coding genes, playing a crucial role in RNA maturation from the polycistronic transcripts. A single major non‐coding region, called the D‐loop region, contains the main regulatory sequences for transcription and replication initiation. This genetic organization has its precise correspondence in the mode of expression and distinctive structural features of the RNAs. The basic mechanisms of mitochondrial DNA transcription and replication and the main cis‐acting elements playing a role in both processes have been determined. Many trans‐acting factors involved in mitochondrial gene expression, including the RNA and DNA polymerases, have been cloned or identified. However, the regulatory mechanisms participating in mitochondrial gene expression are still poorly understood. The interest to complete this knowledge is increased by the involvement of mitochondria in human diseases, in basic processes such as heat production, Ca2+ homeostasis and apoptosis, and by their potential role in ageing and carcinogenesis.


Nature Genetics | 2006

Differences in reactive oxygen species production explain the phenotypes associated with common mouse mitochondrial DNA variants

Raquel Moreno-Loshuertos; Rebeca Acín-Pérez; Patricio Fernández-Silva; Nieves Movilla; Acisclo Pérez-Martos; Santiago Rodríguez de Córdoba; M. Esther Gallardo; José Antonio Enríquez

Common mitochondrial DNA (mtDNA) haplotypes in humans and mice have been associated with various phenotypes, including learning performance and disease penetrance. Notably, no influence of mtDNA haplotype in cell respiration has been demonstrated. Here, using cell lines carrying four different common mouse mtDNA haplotypes in an identical nuclear background, we show that the similar level of respiration among the cell lines is only apparent and is a consequence of compensatory mechanisms triggered by different production of reactive oxygen species. We observe that the respiration capacity per molecule of mtDNA in cells with the NIH3T3 or NZB mtDNA is lower than in those with the C57BL/6J, CBA/J or BALB/cJ mtDNA. In addition, we have determined the genetic element underlying these differences. Our data provide insight into the molecular basis of the complex phenotypes associated with common mtDNA variants and anticipate a relevant contribution of mtDNA single nucleotide polymorphisms to phenotypic variability in humans.


The EMBO Journal | 1997

The human mitochondrial transcription termination factor (mTERF) is a multizipper protein but binds to DNA as a monomer, with evidence pointing to intramolecular leucine zipper interactions

Patricio Fernández-Silva; Francisco Martinez‐Azorin; Vicente Micol; Giuseppe Attardi

The human mitochondrial transcription termination factor (mTERF) cDNA has been cloned and expressed in vitro, and two alternative precursors of the protein have been imported into isolated mitochondria and processed to the mature protein. The precursors contain a mitochondrial targeting sequence, and the mature mTERF (342 residues) exhibits three leucine zippers, of which one is bipartite, and two widely spaced basic domains. The in vitro synthesized mature protein has the expected specific binding capacity for a double‐stranded oligonucleotide containing the tridecamer sequence required for directing termination, and produces a DNase I footprint very similar to that produced by the natural protein. However, in contrast to the latter, it lacks transcription termination‐promoting activity in an in vitro system, pointing to another component(s) being required for making mTERF termination‐competent. A detailed structure–function analysis of the recombinant protein and mutagenized versions of it by band shift assays has demonstrated that both basic domains and the three leucine zipper motifs are necessary for DNA binding. Furthermore, a variety of tests have shown that both the recombinant and the natural mTERF bind to DNA as a monomer, arguing against a dimerization role for the leucine zippers, and rather pointing, together with the results of mutagenesis experiments, to intramolecular leucine zipper interactions being required to bring the two basic domains in close register with the mTERF target DNA sequence.


Molecular and Cellular Biology | 1999

Direct Regulation of Mitochondrial RNA Synthesis by Thyroid Hormone

José Antonio Enríquez; Patricio Fernández-Silva; Nuria Garrido-Pérez; Manuel J. López-Pérez; Acisclo Pérez-Martos; Julio Montoya

ABSTRACT We have analyzed the influence of in vivo treatment and in vitro addition of thyroid hormone on in organello mitochondrial DNA (mtDNA) transcription and, in parallel, on the in organello footprinting patterns at the mtDNA regions involved in the regulation of transcription. We found that thyroid hormone modulates mitochondrial RNA levels and the mRNA/rRNA ratio by influencing the transcriptional rate. In addition, we found conspicuous differences between the mtDNA dimethyl sulfate footprinting patterns of mitochondria derived from euthyroid and hypothyroid rats at the transcription initiation sites but not at the mitochondrial transcription termination factor (mTERF) binding region. Furthermore, direct addition of thyroid hormone to the incubation medium of mitochondria isolated from hypothyroid rats restored the mRNA/rRNA ratio found in euthyroid rats as well as the mtDNA footprinting patterns at the transcription initiation area. Therefore, we conclude that the regulatory effect of thyroid hormone on mitochondrial transcription is partially exerted by a direct influence of the hormone on the mitochondrial transcription machinery. Particularly, the influence on the mRNA/rRNA ratio is achieved by selective modulation of the alternative H-strand transcription initiation sites and does not require the previous activation of nuclear genes. These results provide the first functional demonstration that regulatory signals, such as thyroid hormone, that modify the expression of nuclear genes can also act as primary signals for the transcriptional apparatus of mitochondria.


Nature | 2016

Mitochondrial and nuclear DNA matching shapes metabolism and healthy ageing

Ana Latorre-Pellicer; Raquel Moreno-Loshuertos; Ana Victoria Lechuga-Vieco; Fátima Sánchez-Cabo; Carlos Torroja; Rebeca Acín-Pérez; Enrique Calvo; Esther Aix; Andrés González-Guerra; Angela Logan; María Luisa Bernad-Miana; Eduardo Romanos; Raquel Cruz; Sara Cogliati; Beatriz Sobrino; Angel Carracedo; Acisclo Pérez-Martos; Patricio Fernández-Silva; Jesús Ruiz-Cabello; Michael P. Murphy; Ignacio Flores; Jesús Vázquez; José Antonio Enríquez

Human mitochondrial DNA (mtDNA) shows extensive within-population sequence variability. Many studies suggest that mtDNA variants may be associated with ageing or diseases, although mechanistic evidence at the molecular level is lacking. Mitochondrial replacement has the potential to prevent transmission of disease-causing oocyte mtDNA. However, extension of this technology requires a comprehensive understanding of the physiological relevance of mtDNA sequence variability and its match with the nuclear-encoded mitochondrial genes. Studies in conplastic animals allow comparison of individuals with the same nuclear genome but different mtDNA variants, and have provided both supporting and refuting evidence that mtDNA variation influences organismal physiology. However, most of these studies did not confirm the conplastic status, focused on younger animals, and did not investigate the full range of physiological and phenotypic variability likely to be influenced by mitochondria. Here we systematically characterized conplastic mice throughout their lifespan using transcriptomic, proteomic, metabolomic, biochemical, physiological and phenotyping studies. We show that mtDNA haplotype profoundly influences mitochondrial proteostasis and reactive oxygen species generation, insulin signalling, obesity, and ageing parameters including telomere shortening and mitochondrial dysfunction, resulting in profound differences in health longevity between conplastic strains.


Mitochondrion | 2010

Isolation of mitochondria for biogenetical studies: An update

Erika Fernandez-Vizarra; Gustavo Ferrín; Acisclo Pérez-Martos; Patricio Fernández-Silva; Massimo Zeviani; José Antonio Enríquez

The use of good quality preparations of isolated mitochondria is necessary when studying the mitochondrial biogenetical activities. This article explains a fast and simple method for the purification of mammalian mitochondria from different tissues and cultured cells, that is suitable for the analysis of many aspects of the organelles biogenesis. The mitochondria isolated following the protocol described here, are highly active and capable of DNA, RNA and protein synthesis. Mitochondrial tRNA aminoacylation, mtDNA-protein interactions and specific import of added proteins into the organelles, can also be studied using this kind of preparations.

Collaboration


Dive into the Patricio Fernández-Silva's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rebeca Acín-Pérez

Centro Nacional de Investigaciones Cardiovasculares

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erika Fernandez-Vizarra

MRC Mitochondrial Biology Unit

View shared research outputs
Top Co-Authors

Avatar

Ester Perales-Clemente

Centro Nacional de Investigaciones Cardiovasculares

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge