Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrick Berghmans is active.

Publication


Featured researches published by Patrick Berghmans.


Science of The Total Environment | 2009

Exposure assessment of a cyclist to PM10 and ultrafine particles

Patrick Berghmans; Nico Bleux; L. Int Panis; V.K. Mishra; R. Torfs; M. Van Poppel

Estimating personal exposure to air pollution is a crucial component in identifying high-risk populations and situations. It will enable policy makers to determine efficient control strategies. Cycling is again becoming a favorite mode of transport both in developing and in developed countries due to increasing traffic congestion and environmental concerns. In Europe, it is also seen as a healthy sports activity. However, due to high levels of hazardous pollutants in the present day road microenvironment the cyclist might be at a higher health risk due to higher breathing rate and proximity to the vehicular exhaust. In this paper we present estimates of the exposure of a cyclist to particles of various size fractions including ultrafine particles (UFP) in the town of Mol (Flanders, Belgium). The results indicate relatively higher UFP concentration exposure during morning office hours and moderate UFP levels during afternoon. The major sources of UFP and PM(10) were identified, which are vehicular emission and construction activities, respectively. We also present a dust mapping technique which can be a useful tool for town planners and local policy makers.


Science of The Total Environment | 2014

Land use regression models as a tool for short, medium and long term exposure to traffic related air pollution

Evi Dons; Martine Van Poppel; Luc Int Panis; Sofie De Prins; Patrick Berghmans; Gudrun Koppen; Christine Matheeussen

BACKGROUND AND AIMS In the HEAPS (Health Effects of Air Pollution in Antwerp Schools) study the importance of traffic-related air pollution on the school and home location on childrens health was assessed. 130 children (aged 6 to 12) from two schools participated in a biomonitoring study measuring oxidative stress, inflammation and cardiovascular markers. METHODS Personal exposure of schoolchildren to black carbon (BC) and nitrogen dioxide (NO2) was assessed using both measured and modeled concentrations. Air quality measurements were done in two seasons at approximately 50 locations, including the schools. The land use regression technique was applied to model concentrations at the childrens home address and at the schools. RESULTS In this paper the results of the exposure analysis are given. Concentrations measured at school 2h before the medical examination were used for assessing health effects of short term exposure. Over two seasons, this short term BC exposure ranged from 514 ng/m(3) to 6285 ng/m(3), and for NO2 from 11 μg/m(3) to 36 μg/m(3). An integrated exposure was determined until 10 days before the childs examination, taking into account exposures at home and at school and the time spent in each of these microenvironments. Land use regression estimates were therefore recalculated into daily concentrations by using the temporal trend observed at a fixed monitor of the official air quality network. Concentrations at the childrens homes were modeled to estimate long term exposure (from 1457 ng/m(3) to 3874 ng/m(3) for BC; and from 19 μg/m(3) to 51 μg/m(3) for NO2). CONCLUSIONS The land use regression technique proved to be a fast and accurate means for estimating long term and daily BC and NO2 exposure for children living in the Antwerp area. The spatial and temporal resolution was tailored to the needs of the epidemiologists involved in this study.


Science of The Total Environment | 2012

Wintertime spatio-temporal variation of ultrafine particles in a Belgian city

Vinit Mishra; Prashant Kumar; Martine Van Poppel; Nico Bleux; Evelien Frijns; Matteo Reggente; Patrick Berghmans; Luc Int Panis; Roeland Samson

Simultaneous measurements of ultrafine particles (UFPs) were carried out at four sampling locations situated within a 1 km(2) grid area in a Belgian city, Borgerhout (Antwerp). All sampling sites had different orientation and height of buildings and dissimilar levels of anthropogenic activities (mainly traffic volume). The aims were to investigate: (i) the spatio-temporal variation of UFP within the area, (ii) the effect of wind direction with respect to the volume of traffic on UFP levels, and (iii) the spatial representativeness of the official monitoring station situated in the study area. All sampling sites followed similar diurnal patterns of UFP variation, but effects of local traffic emissions were evident. Wind direction also had a profound influence on UFP concentrations at certain sites. The results indicated a clear influence of local weather conditions and the more dominant effect of traffic volumes. Our analysis indicated that the regional air quality monitoring station represented the other sampling sites in the study area reasonably well; temporal patterns were found to be comparable though the absolute average concentrations showed differences of up to 35%.


Journal of Environmental Monitoring | 2008

Mass and ionic composition of atmospheric fine particles over Belgium and their relation with gaseous air pollutants

László Bencs; Khaiwal Ravindra; Johan de Hoog; Elise Octavie Rasoazanany; Felix Deutsch; Nico Bleux; Patrick Berghmans; Edward Roekens; Agnieszka Krata; René Van Grieken

Mass, major ionic components (MICs) of PM2.5, and related gaseous pollutants (SO2, NO(x), NH3, HNO2, and HNO3) were monitored over six locations of different anthropogenic influence (industrial, urban, suburban, and rural) in Belgium. SO4(2-), NO3-, NH4+, and Na+ were the primary ions of PM2.5 with averages diurnal concentrations ranging from 0.4-4.5, 0.3-7.6, 0.9-4.9, and 0.4-1.2 microg m(-3), respectively. MICs formed 39% of PM2.5 on an average, but it could reach up to 80-98%. The SO2, NO, NO2, HNO2, and HNO3 levels showed high seasonal and site-specific fluctuations. The NH3 levels were similar over all the sites (2-6 microg m(-3)), indicating its relation to the evenly distributed animal husbandry activities. The sulfur and nitrogen oxidation ratios for PM2.5 point towards a low-to-moderate formation of secondary sulfate and nitrate aerosols over five cities/towns, but their fairly intensive formation over the rural Wingene. Cluster analysis revealed the association of three groups of compounds in PM2.5: (i) NH4NO3, KNO3; (ii) Na2SO4; and (iii) MgCl2, CaCl2, MgF2, CaF2, corresponding to anthropogenic, sea-salt, and mixed (sea-salt + anthropogenic) aerosols, respectively. The neutralization and cation-to-anion ratios indicate that MICs of PM2.5 appeared mostly as (NH4)2SO4 and NH4NO3 salts. Sea-salt input was maximal during winter reaching up to 12% of PM2.5. The overall average Cl-loss for sea-salt particles of PM2.5 at the six sites varied between 69 and 96% with an average of 87%. Principal component analysis revealed vehicular emission, coal/wood burning and animal farming as the dominating sources for the ionic components of PM2.5.


Science of The Total Environment | 2011

Dispersion modelling of traffic induced ultrafine particles in a street canyon in Antwerp, Belgium and comparison with observations

Irina Nikolova; Stijn Janssen; Peter Vos; Karl Vrancken; Vinit Mishra; Patrick Berghmans

The aim of this study is to investigate the dispersion of ultrafine particles and its spatial distribution in a street canyon and its neighbourhood with the 3D CFD model ENVI-met®. The performance of the model at street scale is evaluated and the importance of the boundary conditions like wind field and traffic emissions on the UFP concentration is demonstrated. To support and validate the modelled results, a short-term measurement campaign was conducted in a street canyon in Antwerp, Belgium. The UFP concentration was measured simultaneously with P-TRACK (TSI Model 8525) at four different locations in the canyon. The modelled UFP concentrations compare well with the measured data (correlation coefficient R from 0.44 to 0.93) within the standard deviation of the measurements. Despite the moderate traffic flow in the street canyon, UFP concentrations in the canyon are in general double of the background concentrations, indicating the high local contribution for this particle number concentration. Some of the observed concentration profiles are not resembled by the model simulations. For these specific anomalies, further analysis is performed and plausible explanations are put forward. The role of wind direction and traffic emissions is investigated. The performance evaluation of ENVI-met® shows that in general the model qualitatively and quantitatively describes the dispersion of UFP in the street canyon study.


Environmental Pollution | 2010

Appraisal of measurement methods, chemical composition and sources of fine atmospheric particles over six different areas of Northern Belgium

László Bencs; Khaiwal Ravindra; Johan de Hoog; Zoya Spolnik; Nico Bleux; Patrick Berghmans; Felix Deutsch; Edward Roekens; René Van Grieken

Daily and seasonal variation in the total elemental, organic carbon (OC) and elemental carbon (EC) content and mass of PM(2.5) were studied at industrial, urban, suburban and agricultural/rural areas. Continuous (optical Dustscan, standard tapered element oscillating micro-balance (TEOM), TEOM with filter dynamics measurement system), semi-continuous (Partisol filter-sampling) and non-continuous (Dekati-impactor sampling and gravimetry) methods of PM(2.5) mass monitoring were critically evaluated. The average elemental fraction accounted for 2-6% of the PM(2.5) mass measured by gravimetry. Metals, like K, Mn, Fe, Cu, Zn and Pb were strongly inter-correlated, also frequently with non-metallic elements (P, S, Cl and/or Br) and EC/OC. A high OC/EC ratio (2-9) was generally observed. The total carbon content of PM(2.5) ranged between 3 and 77% (averages: 12-32%), peaking near industrial/heavy trafficked sites. Principal component analysis identified heavy oil burning, ferrous/non-ferrous industry and vehicular emissions as the main sources of metal pollution.


Science of The Total Environment | 2011

Size resolved ultrafine particles emission model--a continues size distribution approach.

Irina Nikolova; Stijn Janssen; Karl Vrancken; Peter Vos; Vinit Mishra; Patrick Berghmans

A new parameterization for size resolved ultrafine particles (UFP) traffic emissions is proposed based on the results of PARTICULATES project (Samaras et al., 2005). It includes the emission factors from the Emission Inventory Guidebook (2006) (total number of particles, #/km/veh), the shape of the corresponding particle size distribution given in PARTICULATES and data for the traffic activity. The output of the model UFPEM (UltraFine Particle Emission Model) is a sum of continuous distributions of ultrafine particles emissions per vehicle type (passenger cars and heavy duty vehicles), fuel (petrol and diesel) and average speed representative for urban, rural and highway driving. The results from the parameterization are compared with measured total number of ultrafine particles and size distributions in a tunnel in Antwerp (Belgium). The measured UFP concentration over the entire campaign shows a close relation to the traffic activity. The modelled concentration is found to be lower than the measured in the campaign. The average emission factor from the measurement is 4.29E+14 #/km/veh whereas the calculated is around 30% lower. A comparison of emission factors with literature is done as well and in overall a good agreement is found. For the size distributions it is found that the measured distributions consist of three modes--Nucleation, Aitken and accumulation and most of the ultrafine particles belong to the Nucleation and the Aitken modes. The modelled Aitken mode (peak around 0.04-0.05 μm) is found in a good agreement both as amplitude of the peak and the number of particles whereas the modelled Nucleation mode is shifted to smaller diameters and the peak is much lower that the observed. Time scale analysis shows that at 300 m in the tunnel coagulation and deposition are slow and therefore neglected. The UFPEM emission model can be used as a source term in dispersion models.


Journal of Analytical Atomic Spectrometry | 2011

Speciation and fractionation of nickel in airborne particulate matter: comparison between selective leaching and XAS spectroscopy

Kristof Tirez; Geert Silversmit; Laszlo Vincze; Kelly Servaes; Chris Vanhoof; Myriam Mertens; Nico Bleux; Patrick Berghmans

Nickel speciation and fractionation using a multidisciplinary approach are discussed for different particulate matter samples collected in industrial and rural atmospheres. The technologies utilized in this research span from X-ray Absorption Near Edge Structure (XANES) and X-Ray Diffraction (XRD) to a wet chemistry sequential leaching assay (including determination by inductively coupled plasma atomic emission spectroscopy, ICP-AES). The Zatka sequential leaching method provides an inexpensive assay to differentiate among ‘soluble’, ‘sulfidic’, ‘metallic’, and ‘oxidic’ chemical forms of Ni. The XANES technique is especially well suited for Ni speciation between and to a lesser extent within the 4 defined Ni species groups of the Zatka sequential leaching procedure. Limitations for interpretation in the present study with respect to XANES are the availability of pure phase Ni species for uptake as reference spectra and the collinearity between the spectra of Ni compounds within a Ni species group (e.g. NiSO4·6H2O and Ni(NO3)2·6H2O). The Ni speciation and fractionation results on the particulate matter samples reflect in general a good agreement between the modified Zatka sequential leaching procedure and the XANES data. For the particulate matter collected in and close to a stainless steel factory, Ni included in a spinel structure (NiFe2O4) was identified as the principal Ni species. The particulate matter collected in rural atmosphere showed a 50/50 distribution between soluble and oxidic Ni species.


Human and Ecological Risk Assessment | 2006

Use of the IEUBK Model for Determination of Exposure Routes in View of Site Remediation

Christa Cornelis; Patrick Berghmans; Marc van Sprundel; Jean-Claude Van der Auwera

ABSTRACT The Integrated Exposure Uptake Biokinetic (IEUBK) model is frequently used to estimate blood lead concentrations of children exposed to lead. Simulations with the IEUBK model were run to estimate the blood lead concentration in children living in the vicinity of a non-ferrous plant, situated in Hoboken, Belgium. Concentrations in soil ranged from 59–2425 mg Pb/kg dm, average concentrations in house dust ranged from 234–73394 mg Pb/kg dm. Measured blood lead concentrations in children aged 2–7 years were between 3 and 35 μ g/dl. Exposure sources were indoor dust in the house and the school, outdoor dust and soil in the home surrounding and at the schools playground, and suspended dust in the air. Soil ingestion values and lead exposure from food were changed to Flemish values. The model was able to predict the measured blood lead concentrations adequately except for the lowest exposure group. Predictions showed a systematic overestimation. Analysis of the data revealed that the neighbourhoods school is an important source of exposure to lead; indoor house dust dominates exposure for children going to school outside the area, because of the high concentrations of lead in indoor dust (3 to 5 times higher than in outdoor soil).


Journal of Analytical Atomic Spectrometry | 2015

Speciation of inorganic arsenic in particulate matter by combining HPLC/ICP-MS and XANES analyses

K. Tirez; C. Vanhoof; J. Peters; L. Geerts; Nico Bleux; E. Adriaenssens; E. Roekens; S. Smolek; A. Maderitsch; Ralph Steininger; J. Göttlicher; Florian Meirer; C. Streli; Patrick Berghmans

Inorganic arsenic species in ambient particulate matter (PM10 and PM2.5) have been determined in an urban area, in the vicinity of a metallurgical industrial plant. The developed high performance liquid chromatography inductively coupled plasma mass spectrometry (HPLC/ICP-MS) method allows monitoring of particulate As(III) and As(V)-species, with a limit of quantification of 0.34 ng m−3 As(III) and 0.23 ng m−3 As(V), respectively. Good agreement was obtained between the sum of the concentrations of As(III) and As(V) determined by HPLC/ICP-MS and the total As concentrations determined by XRF, indicating a complete extraction of the As species. During the measuring campaigns for PM10 and PM2.5, a significant conversion (oxidation) up to 54% of exogenous spiked As(III) was observed. The total amount of the spiked As(III) was well-recovered (PM10 and PM2.5 on average 108% and 101%, respectively). The extraction of the filter in combination with the sampled air matrix is likely to induce the As(III) conversion. The average measured As concentration in PM10 during a 40-day monitoring campaign (30 ng m−3) at a hot spot location is above the European target value of 6 ng m−3. The measured As concentration in PM2.5 was half the value of the measured concentration in PM10 and no relative enrichment of total As was observed in either particulate matter fractions. However, in PM10, As(V) was the main component, while in PM2.5, As(III) was the dominant species. During the monitoring campaign, the fraction of particulate As(III) varied between 19 and 61% in PM10 and a trend towards a higher fraction of As(III) with increasing concentration of total As was observed. XANES and XRD analyses were used for the identification of arsenic species in local PM sources and confirmed the presence of Ca3Sr2(AsO4)2.5(PO4)0.5(OH), As2O3 and As2O5 species.

Collaboration


Dive into the Patrick Berghmans's collaboration.

Top Co-Authors

Avatar

Nico Bleux

Flemish Institute for Technological Research

View shared research outputs
Top Co-Authors

Avatar

Vinit Mishra

Flemish Institute for Technological Research

View shared research outputs
Top Co-Authors

Avatar

Luc Int Panis

Flemish Institute for Technological Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chris Vanhoof

Flemish Institute for Technological Research

View shared research outputs
Top Co-Authors

Avatar

Evelien Frijns

Flemish Institute for Technological Research

View shared research outputs
Top Co-Authors

Avatar

Felix Deutsch

Flemish Institute for Technological Research

View shared research outputs
Top Co-Authors

Avatar

Irina Nikolova

Flemish Institute for Technological Research

View shared research outputs
Top Co-Authors

Avatar

Kristof Tirez

Flemish Institute for Technological Research

View shared research outputs
Top Co-Authors

Avatar

Martine Van Poppel

Flemish Institute for Technological Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge