Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrick Bron is active.

Publication


Featured researches published by Patrick Bron.


Journal of Biological Chemistry | 2003

Structural characterization of HC-pro, a plant virus multifunctional protein

Célia Plisson; Martin Drucker; Stéphane Blanc; Sylvie German-Retana; Olivier Le Gall; Daniel Thomas; Patrick Bron

The helper component proteinase (HC-Pro) is a key protein encoded by plant viruses of the genus Potyvirus. HC-Pro is involved in different steps of the viral cycle, aphid transmission, replication, and virus cell-to-cell and systemic movement and is a suppressor of post-transcriptional gene silencing. Structural knowledge of HC-Pro is required to better understand its multiple functions. To this aim, we purified His-tagged wild-type HC-Pro and a N-terminal deletion mutant (ΔHC-Pro) from plants infected with recombinant potyviruses. Biochemical analysis of the recombinant proteins confirmed that HC-Pro is a dimer in solution, that the N terminus is not essential for self-interaction, and that a large C-terminal domain is highly resistant to proteolysis. Two-dimensional crystals of the recombinant proteins were successfully grown on Ni2+-chelating lipid monolayers. Comparison of projection maps of negatively stained crystals revealed that HC-Pro is composed of two domains separated by a flexible constriction. Cryo-electron crystallography of ΔHC-Pro allowed us to calculate a projection map at 9-Å resolution. Our data from electron microscopy, biochemical analysis, and secondary structure predictions lead us to suggest a model for structure/function relationships in the HC-Pro protein.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Structural insights into biased G protein-coupled receptor signaling revealed by fluorescence spectroscopy

Rita Rahmeh; Marjorie Damian; Martin Cottet; Hélène Orcel; Christiane Mendre; Thierry Durroux; K. Shivaji Sharma; Grégory Durand; Bernard Pucci; Eric Trinquet; Jurriaan M. Zwier; Xavier Deupi; Patrick Bron; Jean-Louis Banères; Bernard Mouillac; Sébastien Granier

G protein-coupled receptors (GPCRs) are seven-transmembrane proteins that mediate most cellular responses to hormones and neurotransmitters, representing the largest group of therapeutic targets. Recent studies show that some GPCRs signal through both G protein and arrestin pathways in a ligand-specific manner. Ligands that direct signaling through a specific pathway are known as biased ligands. The arginine-vasopressin type 2 receptor (V2R), a prototypical peptide-activated GPCR, is an ideal model system to investigate the structural basis of biased signaling. Although the native hormone arginine-vasopressin leads to activation of both the stimulatory G protein (Gs) for the adenylyl cyclase and arrestin pathways, synthetic ligands exhibit highly biased signaling through either Gs alone or arrestin alone. We used purified V2R stabilized in neutral amphipols and developed fluorescence-based assays to investigate the structural basis of biased signaling for the V2R. Our studies demonstrate that the Gs-biased agonist stabilizes a conformation that is distinct from that stabilized by the arrestin-biased agonists. This study provides unique insights into the structural mechanisms of GPCR activation by biased ligands that may be relevant to the design of pathway-biased drugs.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Structure of lactococcal phage p2 baseplate and its mechanism of activation

Giuliano Sciara; Cecilia Bebeacua; Patrick Bron; Denise M. Tremblay; Miguel Ortiz-Lombardía; Julie Lichière; Marin van Heel; Valérie Campanacci; Sylvain Moineau; Christian Cambillau

Siphoviridae is the most abundant viral family on earth which infects bacteria as well as archaea. All known siphophages infecting gram+ Lactococcus lactis possess a baseplate at the tip of their tail involved in host recognition and attachment. Here, we report analysis of the p2 phage baseplate structure by X-ray crystallography and electron microscopy and propose a mechanism for the baseplate activation during attachment to the host cell. This ∼1 MDa, Escherichia coli-expressed baseplate is composed of three protein species, including six trimers of the receptor-binding protein (RBP). RBPs host-recognition domains point upwards, towards the capsid, in agreement with the electron-microscopy map of the free virion. In the presence of Ca2+, a cation mandatory for infection, the RBPs rotated 200° downwards, presenting their binding sites to the host, and a channel opens at the bottom of the baseplate for DNA passage. These conformational changes reveal a novel siphophage activation and host-recognition mechanism leading ultimately to DNA ejection.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Distinct roles of metabotropic glutamate receptor dimerization in agonist activation and G-protein coupling

Driss El Moustaine; Sébastien Granier; Etienne Doumazane; Pauline Scholler; Rita Rahmeh; Patrick Bron; Bernard Mouillac; Jean-Louis Banères; Philippe Rondard; Jean-Philippe Pin

The eight metabotropic glutamate receptors (mGluRs) are key modulators of synaptic transmission and are considered promising targets for the treatment of various brain disorders. Whereas glutamate acts at a large extracellular domain, allosteric modulators have been identified that bind to the seven transmembrane domain (7TM) of these dimeric G-protein-coupled receptors (GPCRs). We show here that the dimeric organization of mGluRs is required for the modulation of active and inactive states of the 7TM by agonists, but is not necessary for G-protein activation. Monomeric mGlu2, either as an isolated 7TM or in full-length, purified and reconstituted into nanodiscs, couples to G proteins upon direct activation by a positive allosteric modulator. However, only a reconstituted full-length dimeric mGlu2 activates G protein upon glutamate binding, suggesting that dimerization is required for glutamate induced activation. These data show that, even for such well characterized GPCR dimers like mGluR2, a single 7TM is sufficient for G-protein coupling. Despite this observation, the necessity of dimeric architecture for signaling induced by the endogenous ligand glutamate confirms that the central core of signaling complex is dimeric.


Biology of the Cell | 2008

Supramolecular organization of the yeast F1Fo‐ATP synthase

Daniel Thomas; Patrick Bron; Théodore Weimann; Alain Dautant; Marie-France Giraud; Patrick Paumard; Bénédicte Salin; Annie Cavalier; Jean Velours; Daniel Brèthes

Background information. The yeast mitochondrial F1Fo‐ATP synthase is a large complex of 600 kDa that uses the proton electrochemical gradient generated by the respiratory chain to catalyse ATP synthesis from ADP and Pi. For a large range of organisms, it has been shown that mitochondrial ATP synthase adopts oligomeric structures. Moreover, several studies have suggested that a link exists between ATP synthase and mitochondrial morphology.


Biology of the Cell | 2008

Apo-Hsp90 coexists in two open conformational states in solution

Patrick Bron; Emmanuel Giudice; Jean-Paul Rolland; Rubén M. Buey; Pascale Barbier; J. Fernando Díaz; Vincent Peyrot; Daniel Thomas; Cyrille Garnier

Background information. Hsp90 (90 kDa heat‐shock protein) plays a key role in the folding and activation of many client proteins involved in signal transduction and cell cycle control. The cycle of Hsp90 has been intimately associated with large conformational rearrangements, which are nucleotide‐binding‐dependent. However, up to now, our understanding of Hsp90 conformational changes derives from structural information, which refers to the crystal states of either recombinant Hsp90 constructs or the prokaryotic homologue HtpG (Hsp90 prokaryotic homologue).


Journal of Biological Chemistry | 2010

Structure and molecular assignment of lactococcal phage TP901-1 baseplate.

Cecilia Bebeacua; Patrick Bron; Livia Lai; Christina S. Vegge; Lone Brøndsted; Silvia Spinelli; Valérie Campanacci; David Veesler; Marin van Heel; Christian Cambillau

P335 lactococcal phages infect the Gram+ bacterium Lactococcus lactis using a large multiprotein complex located at the distal part of the tail and termed baseplate (BP). The BP harbors the receptor-binding proteins (RBPs), which allow the specific recognition of saccharidic receptors localized on the host cell surface. We report here the electron microscopic structure of the phage TP901-1 wild-type BP as well as those of two mutants bppL − and bppU−, lacking BppL (the RBPs) or both peripheral BP components (BppL and BppU), respectively. We also achieved an electron microscopic reconstruction of a partial BP complex, formed by BppU and BppL. This complex exhibits a tripod shape and is composed of nine BppLs and three BppUs. These structures, combined with light-scattering measurements, led us to propose that the TP901-1 BP harbors six tripods at its periphery, located around the central tube formed by ORF46 (Dit) hexamers, at its proximal end, and a ORF47 (Tal) trimer at its distal extremity. A total of 54 BppLs (18 RBPs) are thus available to mediate host anchoring with a large apparent avidity. TP901-1 BP exhibits an infection-ready conformation and differs strikingly from the lactococcal phage p2 BP, bearing only 6 RBPs, and which needs a conformational change to reach its activated state. The comparison of several Siphoviridae structures uncovers a close organization of their central BP core whereas striking differences occur at the periphery, leading to diverse mechanisms of host recognition.


Journal of Biological Chemistry | 2010

Crystal Structure of Bacteriophage SPP1 Distal Tail Protein (gp19.1) A BASEPLATE HUB PARADIGM IN GRAM-POSITIVE INFECTING PHAGES

David Veesler; Gautier Robin; Julie Lichière; Isabelle Auzat; Paulo Tavares; Patrick Bron; Valérie Campanacci; Christian Cambillau

Siphophage SPP1 infects the Gram-positive bacterium Bacillus subtilis using its long non-contractile tail and tail-tip. Electron microscopy (EM) previously allowed a low resolution assignment of most orf products belonging to these regions. We report here the structure of the SPP1 distal tail protein (Dit, gp19.1). The combination of x-ray crystallography, EM, and light scattering established that Dit is a back-to-back dimer of hexamers. However, Dit fitting in the virion EM maps was only possible with a hexamer located between the tail-tube and the tail-tip. Structure comparison revealed high similarity between Dit and a central component of lactophage baseplates. Sequence similarity search expanded its relatedness to several phage proteins, suggesting that Dit is a docking platform for the tail adsorption apparatus in Siphoviridae infecting Gram-positive bacteria and that its architecture is a paradigm for these hub proteins. Dit structural similarity extends also to non-contractile and contractile phage tail proteins (gpVN and XkdM) as well as to components of the bacterial type 6 secretion system, supporting an evolutionary connection between all these devices.


Microbiology | 2001

Functional characterization of a microbial aquaglyceroporin

Alexandrine Froger; Jean-Paul Rolland; Patrick Bron; Valérie Lagrée; Françoise Le Cahérec; Stéphane Deschamps; Jean-François Hubert; Isabelle Pellerin; Daniel Thomas; Christian Delamarche

The major intrinsic proteins (MIPs) constitute a widespread membrane channel family essential for osmotic cell equilibrium. The MIPs can be classified into three functional subgroups: aquaporins, glycerol facilitators and aquaglyceroporins. Bacterial MIP genes have been identified in archaea as well as in Gram-positive and Gram-negative eubacteria. However, with the exception of Escherichia coli, most bacterial MIPs have been analysed by sequence homology. Since no MIP has yet been functionally characterized in Gram-positive bacteria, we have studied one of these members from Lactococcus lactis. This MIP is shown to be permeable to glycerol, like E. coli GlpF, and to water, like E. coli AqpZ. This is the first characterization of a microbial MIP that has a mixed function. This result provides important insights to reconstruct the evolutionary history of the MIP family and to elucidate the molecular pathway of water and other solutes in these channels.


The EMBO Journal | 2010

tmRNA–SmpB: a journey to the centre of the bacterial ribosome

Félix Weis; Patrick Bron; Emmanuel Giudice; Jean-Paul Rolland; Daniel Thomas; Brice Felden; Reynald Gillet

Ribosomes mediate protein synthesis by decoding the information carried by messenger RNAs (mRNAs) and catalysing peptide bond formation between amino acids. When bacterial ribosomes stall on incomplete messages, the trans‐translation quality control mechanism is activated by the transfer‐messenger RNA bound to small protein B (tmRNA–SmpB ribonucleoprotein complex). Trans‐translation liberates the stalled ribosomes and triggers degradation of the incomplete proteins. Here, we present the cryo‐electron microscopy structures of tmRNA–SmpB accommodated or translocated into stalled ribosomes. Two atomic models for each state are proposed. This study reveals how tmRNA–SmpB crosses the ribosome and how, as the problematic mRNA is ejected, the tmRNA resume codon is placed onto the ribosomal decoding site by new contacts between SmpB and the nucleotides upstream of the tag‐encoding sequence. This provides a structural basis for the transit of the large tmRNA–SmpB complex through the ribosome and for the means by which the tmRNA internal frame is set for translation to resume.

Collaboration


Dive into the Patrick Bron's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Valérie Campanacci

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge