Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrick C. Brunner is active.

Publication


Featured researches published by Patrick C. Brunner.


Pest Management Science | 2009

QoI resistance emerged independently at least 4 times in European populations of Mycosphaerella graminicola

Stefano F.F. Torriani; Patrick C. Brunner; Bruce A. McDonald; Helge Sierotzki

BACKGROUND QoI fungicides or quinone outside inhibitors (also called strobilurins) have been widely used to control agriculturally important fungal pathogens since their introduction in 1996. Strobilurins block the respiration pathway by inhibiting the cytochrome bc1 complex in mitochondria. Several plant pathogenic fungi have developed field resistance. The first QoI resistance in Mycosphaerella graminicola (Fuckel) Schroter was detected retrospectively in UK in 2001 at a low frequency in QoI-treated plots. During the following seasons, resistance reached high frequencies across northern Europe. The aim of this study was to identify the main evolutionary forces driving the rapid emergence and spread of QoI resistance in M. graminicola populations. RESULTS The G143A mutation causing QoI resistance was first detected during 2002 in all tested populations and in eight distinct mtDNA sequence haplotypes. By 2004, 24 different mtDNA haplotypes contained the G143A mutation. Phylogenetic analysis showed that strobilurin resistance was acquired independently through at least four recurrent mutations at the same site of cytochrome b. Estimates of directional migration rates showed that the majority of gene flow in Europe had occurred in a west-to-east direction. CONCLUSION This study demonstrated that recurring mutations independently introduced the QoI resistance allele into different genetic and geographic backgrounds. The resistant haplotypes then increased in frequency owing to the strong fungicide selection and spread eastward through wind dispersal of ascospores.


PLOS Pathogens | 2010

Evolution of Linked Avirulence Effectors in Leptosphaeria maculans Is Affected by Genomic Environment and Exposure to Resistance Genes in Host Plants

Angela P. Van de Wouw; Anton J. Cozijnsen; James K. Hane; Patrick C. Brunner; Bruce A. McDonald; Richard P. Oliver; Barbara J. Howlett

Brassica napus (canola) cultivars and isolates of the blackleg fungus, Leptosphaeria maculans interact in a ‘gene for gene’ manner whereby plant resistance (R) genes are complementary to pathogen avirulence (Avr) genes. Avirulence genes encode proteins that belong to a class of pathogen molecules known as effectors, which includes small secreted proteins that play a role in disease. In Australia in 2003 canola cultivars with the Rlm1 resistance gene suffered a breakdown of disease resistance, resulting in severe yield losses. This was associated with a large increase in the frequency of virulence alleles of the complementary avirulence gene, AvrLm1, in fungal populations. Surprisingly, the frequency of virulence alleles of AvrLm6 (complementary to Rlm6) also increased dramatically, even though the cultivars did not contain Rlm6. In the L. maculans genome, AvrLm1 and AvrLm6 are linked along with five other genes in a region interspersed with transposable elements that have been degenerated by Repeat-Induced Point (RIP) mutations. Analyses of 295 Australian isolates showed deletions, RIP mutations and/or non-RIP derived amino acid substitutions in the predicted proteins encoded by these seven genes. The degree of RIP mutations within single copy sequences in this region was proportional to their proximity to the degenerated transposable elements. The RIP alleles were monophyletic and were present only in isolates collected after resistance conferred by Rlm1 broke down, whereas deletion alleles belonged to several polyphyletic lineages and were present before and after the resistance breakdown. Thus, genomic environment and exposure to resistance genes in B. napus has affected the evolution of these linked avirulence genes in L. maculans.


Heredity | 2007

Invasion success of the bumblebee, Bombus terrestris, despite a drastic genetic bottleneck

P. Schmid-Hempel; Regula Schmid-Hempel; Patrick C. Brunner; O. D. Seeman; Gr Allen

In early 1992, the European bumblebee, Bombus terrestris, was first seen in Tasmania and currently has spread to most of the island. Here, we report on the genetic structure, using micro-satellites, of the invading population from samples collected in the years 1998–2000, a few years after the first sighting of the species in its new area. The data show that the Tasmanian population has a very low genetic diversity, with less than half of the allelic richness (Richness=2.89 alleles; Hexp=0.591) and lower levels of heterozygosity as compared to populations in New Zealand (4.24 alleles; Hexp=0.729) and Europe (5.08 alleles; Hexp=0.826). In addition, the genetic data suggest that the invasion must have happened once, probably around late 1991, and was the result of very few, perhaps only two, individuals arriving in Tasmania. Furthermore, these founders came from the New Zealand population. Today, the population in the south of Tasmania seems to act as a source population from which individuals migrate into other parts of the state. A similar source–sink structure seems also the case for New Zealand. The data show that B. terrestris is a highly invasive species capable of establishing itself even after a dramatic genetic bottleneck. B. terrestris may be an invasive species due to the haplo–diploid sex determination system, which exposes recessive, deleterious mutations to selection. Offspring of such purged lines may then be able to tolerate high levels of inbreeding.


Molecular Plant Pathology | 2008

Evolution of the CYP51 gene in Mycosphaerella graminicola: evidence for intragenic recombination and selective replacement.

Patrick C. Brunner; Francesca L. Stefanato; Bruce A. McDonald

Recent findings are consistent with a slow but constant shift towards reduced sensitivity of Mycosphaerella graminicola to azole fungicides, which target the CYP51 gene. The goal of this study was to elucidate the evolutionary mechanisms through which CYP51-based mutations associated with altered sensitivity have evolved in M. graminicola over space and time. To accomplish this, we sequenced and compared a portion of the CYP51 gene encompassing the main mutations associated with altered sensitivity towards demethylation inhibitor fungicides. The CYP51 gene showed an extraordinary dynamic shift consistent with a selective haplotype replacement both in space and in time. No mutations associated with increased resistance to azoles were found in non-European populations. These mutations were also absent in the oldest collections from Europe, whereas they dominated in the recent European populations. Intragenic recombination was identified as an important evolutionary process in populations affected by high fungicide selection, suggesting the creation of novel alleles among existing mutations as a potential source of novel resistance alleles. We propose that CYP51 mutations giving resistance in M. graminicola arose only locally (perhaps in Denmark or the UK) and were then spread eastward across Europe through wind-dispersed ascospores. We conclude that recurring cycles of recombination coupled with selection due to the widespread use of azole fungicides will increase the frequency of novel mutants or recombinants with higher resistance. Long-distance gene flow due to wind dispersal of ascospores will move the resulting new alleles to new areas following the prevailing wind directions. A selective replacement favouring haplotypes with various coding mutations at the target site for azole fungicides during the last 5-10 years is the most likely cause of the decrease in sensitivity reported for many azole fungicides in the same period.


Molecular Biology and Evolution | 2013

Coevolution and Life Cycle Specialization of Plant Cell Wall Degrading Enzymes in a Hemibiotrophic Pathogen

Patrick C. Brunner; Stefano F.F. Torriani; Daniel Croll; Eva H. Stukenbrock; Bruce A. McDonald

Zymoseptoria tritici is an important fungal pathogen on wheat that originated in the Fertile Crescent. Its closely related sister species Z. pseudotritici and Z. ardabiliae infect wild grasses in the same region. This recently emerged host–pathogen system provides a rare opportunity to investigate the evolutionary processes shaping the genome of an emerging pathogen. Here, we investigate genetic signatures in plant cell wall degrading enzymes (PCWDEs) that are likely affected by or driving coevolution in plant-pathogen systems. We hypothesize four main evolutionary scenarios and combine comparative genomics, transcriptomics, and selection analyses to assign the majority of PCWDEs in Z. tritici to one of these scenarios. We found widespread differential transcription among different members of the same gene family, challenging the idea of functional redundancy and suggesting instead that specialized enzymatic activity occurs during different stages of the pathogen life cycle. We also find that natural selection has significantly affected at least 19 of the 48 identified PCWDEs. The majority of genes showed signatures of purifying selection, typical for the scenario of conserved substrate optimization. However, six genes showed diversifying selection that could be attributed to either host adaptation or host evasion. This study provides a powerful framework to better understand the roles played by different members of multigene families and to determine which genes are the most appropriate targets for wet laboratory experimentation, for example, to elucidate enzymatic function during relevant phases of a pathogen’s life cycle.


Current Biology | 2011

Evidence for Extensive Recent Intron Transposition in Closely Related Fungi

Stefano F.F. Torriani; Eva H. Stukenbrock; Patrick C. Brunner; Bruce A. McDonald; Daniel Croll

Though spliceosomal introns are a major structural component of most eukaryotic genes and intron density varies by more than three orders of magnitude among eukaryotes [1-3], the origins of introns are poorly understood, and only a few cases of unambiguous intron gain are known [4-8]. We utilized population genomic comparisons of three closely related fungi to identify crucial transitory phases of intron gain and loss. We found 74 intron positions showing intraspecific presence-absence polymorphisms (PAPs) for the entire intron. Population genetic analyses identified intron PAPs at different stages of fixation and showed that intron gain or loss was very recent. We found direct support for extensive intron transposition among unrelated genes. A substantial proportion of highly similar introns in the genome either were recently gained or showed a transient phase of intron PAP. We also identified an intron transfer among paralogous genes that created a new intron. Intron loss was due mainly to homologous recombination involving reverse-transcribed mRNA. The large number of intron positions in transient phases of either intron gain or loss shows that intron evolution is much faster than previously thought and provides an excellent model to study molecular mechanisms of intron gain.


Journal of Evolutionary Biology | 2007

The origin and colonization history of the barley scald pathogen Rhynchosporium secalis

Patrick C. Brunner; Stefanie Schürch; Bruce A. McDonald

The origins of pathogens and their past and present migration patterns are often unknown. We used phylogenetic haplotype clustering in conjunction with model‐based coalescent approaches to reconstruct the genetic history of the barley leaf pathogen Rhynchosporium secalis using the avirulence gene NIP1 and its flanking regions. Our results falsify the hypothesis that R. secalis emerged in association with its host during the domestication of barley 10 000 to 15 000 years ago in the Fertile Crescent and was introduced into Europe through the migration of Neolithic farmers. Estimates of time since most recent common ancestor (2500–5000 BP) placed the emergence of R. secalis clearly after the domestication of barley. We propose that modern populations of R. secalis originated in northern Europe following a host switch, most probably from a wild grass onto cultivated barley shortly after barley was introduced into northern Europe. R. secalis subsequently spread southwards into already established European barley‐growing areas.


New Phytologist | 2013

Global diversity and distribution of three necrotrophic effectors in Phaeosphaeria nodorum and related species

Megan C. McDonald; Richard P. Oliver; Timothy L. Friesen; Patrick C. Brunner; Bruce A. McDonald

Population genetic and phylogenetic studies have shown that Phaeosphaeria nodorum is a member of a species complex that probably shares its center of origin with wheat (Triticum aestivum and Triticum durum). We examined the evolutionary histories of three known necrotrophic effectors (NEs) produced by P. nodorum and compared them with neutral loci. We screened over 1000 individuals for the presence/absence of each effector and assigned each individual to a multi-effector genotype. Diversity at each NE locus was assessed by sequencing c. 200 individuals for each locus. We found significant differences in effector frequency among populations. We propose that these differences reflect the presence/absence of the corresponding susceptibility gene in wheat cultivars. The population harboring the highest sequence diversity was different for each effector locus and never coincided with populations harboring the highest diversity at neutral loci. Coalescent and phylogenetic analyses showed a discontinuous presence of all three NEs among nine closely related Phaeosphaeria species. Only two of the nine species were found to harbor NEs. We present evidence that the three described NEs of P. nodorum were transmitted to its sister species, Phaeosphaeria avenaria tritici 1, via interspecific hybridization.


Ecology and Evolution | 2012

Invasion history and demographic pattern of Cryphonectria hypovirus 1 across European populations of the chestnut blight fungus

Sarah Franziska Bryner; Daniel Rigling; Patrick C. Brunner

We reconstructed the invasion history of the fungal virus Cryphonectria hypovirus 1 (CHV-1) in Europe, which infects the chestnut blight fungus Cryphonectria parasitica. The pattern of virus evolution was inferred based on nucleotide sequence variation from isolates sampled across a wide area in Europe at different points in time. Phylogeny and time estimates suggested that CHV-1 was introduced together with its fungal host to Europe and that it rapidly colonized the central range along the south facing slopes of the Alps and the north-east facing slopes of the Dinaric Alps. These central populations were the source for two waves of simultaneous invasions toward the southern Balkans and Turkey, as indicated by migration rates. Our results showed that the evolutionary scenarios for CHV-1 and C. parasitica were spatially congruent. As infection with CHV-1 reduces the pathogenicity of C. parasitica toward the chestnut tree, CHV-1 invasions of the newly established C. parasitica populations probably prevented the development of devastating chestnut blight epidemics in Europe. We propose that in this, and supposedly in other pathosystems, geographic, vegetation-related, demographic, economic, and political factors may help explain the correlated invasion pattern of a parasite and its host.


Molecular Ecology | 2012

Migration patterns and changes in population biology associated with the worldwide spread of the oilseed rape pathogen Leptosphaeria maculans

Azita Dilmaghani; Pierre Gladieux; Lilian Gout; Tatiana Giraud; Patrick C. Brunner; Anna Stachowiak; Marie-Hélène Balesdent; Thierry Rouxel

Pathogen introductions into novel areas can lead to the emergence of new fungal diseases of plants. Understanding the origin, introduction pathways, possible changes in reproductive system and population size of fungal pathogens is essential in devising an integrated strategy for the control of these diseases. We used minisatellite markers to infer the worldwide invasion history of the fungal plant pathogen Leptosphaeria maculans, which causes stem canker (blackleg) of oilseed and vegetable brassicas. Clustering analyses partitioned genotypes into distinct populations corresponding to major geographic regions, along with two differentiated populations in Western Canada. Comparison of invasion scenarios using Approximate Bayesian Computation suggested an origin of the pathogen in the USA, the region where epidemics were first recorded, and independent introductions from there over the last few decades into Eastern Canada (Ontario), Europe and Australia. The population in Western Canada appeared to be founded from a source in Ontario and the population in Chile resulted from an admixture between multiple sources. A bottleneck was inferred for the introduction into Western Canada but not into Europe, Ontario or Australia. Clonality appeared high in Western Canada, possibly because environmental conditions there were less conducive to sexual reproduction. Leptosphaeria maculans is a model invasive pathogen with contrasting features in different regions: shallow population structure, high genetic variability and regular sexual recombination in some regions, by comparison with reduced genetic variability, high rates of asexual multiplication, strong population structure or admixture in others.

Collaboration


Dive into the Patrick C. Brunner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge