Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrick Chain is active.

Publication


Featured researches published by Patrick Chain.


Nature | 2003

Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation

Gabrielle Rocap; Frank W. Larimer; Jane E. Lamerdin; Stephanie Malfatti; Patrick Chain; Nathan A. Ahlgren; Andrae Arellano; Maureen L. Coleman; Loren Hauser; Wolfgang R. Hess; Zackary I. Johnson; Miriam Land; Debbie Lindell; Anton F. Post; Warren Regala; Manesh B Shah; Stephanie L. Shaw; Claudia Steglich; Matthew B. Sullivan; Claire S. Ting; Andrew C. Tolonen; Eric A. Webb; Erik R. Zinser; Sallie W. Chisholm

The marine unicellular cyanobacterium Prochlorococcus is the smallest-known oxygen-evolving autotroph. It numerically dominates the phytoplankton in the tropical and subtropical oceans, and is responsible for a significant fraction of global photosynthesis. Here we compare the genomes of two Prochlorococcus strains that span the largest evolutionary distance within the Prochlorococcus lineage and that have different minimum, maximum and optimal light intensities for growth. The high-light-adapted ecotype has the smallest genome (1,657,990 base pairs, 1,716 genes) of any known oxygenic phototroph, whereas the genome of its low-light-adapted counterpart is significantly larger, at 2,410,873 base pairs (2,275 genes). The comparative architectures of these two strains reveal dynamic genomes that are constantly changing in response to myriad selection pressures. Although the two strains have 1,350 genes in common, a significant number are not shared, and these have been differentially retained from the common ancestor, or acquired through duplication or lateral transfer. Some of these genes have obvious roles in determining the relative fitness of the ecotypes in response to key environmental variables, and hence in regulating their distribution and abundance in the oceans.


Nature | 2009

A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea.

Dongying Wu; Philip Hugenholtz; Konstantinos Mavromatis; Rüdiger Pukall; Eileen Dalin; Natalia Ivanova; Victor Kunin; Lynne Goodwin; Martin Wu; Brian J. Tindall; Sean D. Hooper; Amrita Pati; Athanasios Lykidis; Stefan Spring; Iain Anderson; Patrik D’haeseleer; Adam Zemla; Alla Lapidus; Matt Nolan; Alex Copeland; Cliff Han; Feng Chen; Jan-Fang Cheng; Susan Lucas; Cheryl A. Kerfeld; Elke Lang; Sabine Gronow; Patrick Chain; David Bruce; Edward M. Rubin

Sequencing of bacterial and archaeal genomes has revolutionized our understanding of the many roles played by microorganisms. There are now nearly 1,000 completed bacterial and archaeal genomes available, most of which were chosen for sequencing on the basis of their physiology. As a result, the perspective provided by the currently available genomes is limited by a highly biased phylogenetic distribution. To explore the value added by choosing microbial genomes for sequencing on the basis of their evolutionary relationships, we have sequenced and analysed the genomes of 56 culturable species of Bacteria and Archaea selected to maximize phylogenetic coverage. Analysis of these genomes demonstrated pronounced benefits (compared to an equivalent set of genomes randomly selected from the existing database) in diverse areas including the reconstruction of phylogenetic history, the discovery of new protein families and biological properties, and the prediction of functions for known genes from other organisms. Our results strongly support the need for systematic ‘phylogenomic’ efforts to compile a phylogeny-driven ‘Genomic Encyclopedia of Bacteria and Archaea’ in order to derive maximum knowledge from existing microbial genome data as well as from genome sequences to come.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea

Christopher B. Walker; J.R. de la Torre; Martin G. Klotz; Hidetoshi Urakawa; Nicolás Pinel; Daniel J. Arp; Céline Brochier-Armanet; Patrick Chain; Patricia P. Chan; A. Gollabgir; James Hemp; Michael Hügler; E.A. Karr; Martin Könneke; Maria V. Shin; Thomas J. Lawton; Todd M. Lowe; Willm Martens-Habbena; Luis A. Sayavedra-Soto; D. Lang; Stefan M. Sievert; Amy C. Rosenzweig; Gerard Manning; David A. Stahl

Ammonia-oxidizing archaea are ubiquitous in marine and terrestrial environments and now thought to be significant contributors to carbon and nitrogen cycling. The isolation of Candidatus “Nitrosopumilus maritimus” strain SCM1 provided the opportunity for linking its chemolithotrophic physiology with a genomic inventory of the globally distributed archaea. Here we report the 1,645,259-bp closed genome of strain SCM1, revealing highly copper-dependent systems for ammonia oxidation and electron transport that are distinctly different from known ammonia-oxidizing bacteria. Consistent with in situ isotopic studies of marine archaea, the genome sequence indicates N. maritimus grows autotrophically using a variant of the 3-hydroxypropionate/4-hydroxybutryrate pathway for carbon assimilation, while maintaining limited capacity for assimilation of organic carbon. This unique instance of archaeal biosynthesis of the osmoprotectant ectoine and an unprecedented enrichment of multicopper oxidases, thioredoxin-like proteins, and transcriptional regulators points to an organism responsive to environmental cues and adapted to handling reactive copper and nitrogen species that likely derive from its distinctive biochemistry. The conservation of N. maritimus gene content and organization within marine metagenomes indicates that the unique physiology of these specialized oligophiles may play a significant role in the biogeochemical cycles of carbon and nitrogen.


Nature | 2003

The genome of a motile marine Synechococcus

Brian Palenik; Bianca Brahamsha; Frank W. Larimer; Miriam Land; Loren Hauser; Patrick Chain; Jane E. Lamerdin; W. Regala; Eric E. Allen; J. McCarren; I. Paulsen; A. Dufresne; F. Partensky; Eric A. Webb; John B. Waterbury

Marine unicellular cyanobacteria are responsible for an estimated 20–40% of chlorophyll biomass and carbon fixation in the oceans. Here we have sequenced and analysed the 2.4-megabase genome of Synechococcus sp. strain WH8102, revealing some of the ways that these organisms have adapted to their largely oligotrophic environment. WH8102 uses organic nitrogen and phosphorus sources and more sodium-dependent transporters than a model freshwater cyanobacterium. Furthermore, it seems to have adopted strategies for conserving limited iron stores by using nickel and cobalt in some enzymes, has reduced its regulatory machinery (consistent with the fact that the open ocean constitutes a far more constant and buffered environment than fresh water), and has evolved a unique type of swimming motility. The genome of WH8102 seems to have been greatly influenced by horizontal gene transfer, partially through phages. The genetic material contributed by horizontal gene transfer includes genes involved in the modification of the cell surface and in swimming motility. On the basis of its genome, WH8102 is more of a generalist than two related marine cyanobacteria.


Nature Biotechnology | 2004

Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris.

Frank W. Larimer; Patrick Chain; Loren Hauser; Jane E. Lamerdin; Stephanie Malfatti; Long Do; Miriam Land; Dale A. Pelletier; Thomas G. Beatty; Andrew S. Lang; F. Robert Tabita; Janet L. Gibson; Cedric Bobst; Janelle L. Torres y Torres; Caroline Peres; Faith H. Harrison; Jane Gibson; Caroline S. Harwood

Rhodopseudomonas palustris is among the most metabolically versatile bacteria known. It uses light, inorganic compounds, or organic compounds, for energy. It acquires carbon from many types of green plant–derived compounds or by carbon dioxide fixation, and it fixes nitrogen. Here we describe the genome sequence of R. palustris, which consists of a 5,459,213-base-pair (bp) circular chromosome with 4,836 predicted genes and a plasmid of 8,427 bp. The sequence reveals genes that confer a remarkably large number of options within a given type of metabolism, including three nitrogenases, five benzene ring cleavage pathways and four light harvesting 2 systems. R. palustris encodes 63 signal transduction histidine kinases and 79 response regulator receiver domains. Almost 15% of the genome is devoted to transport. This genome sequence is a starting point to use R. palustris as a model to explore how organisms integrate metabolic modules in response to environmental perturbations.


Journal of Bacteriology | 2003

Complete Genome Sequence of the Ammonia-Oxidizing Bacterium and Obligate Chemolithoautotroph Nitrosomonas europaea

Patrick Chain; Jane E. Lamerdin; Frank W. Larimer; Warren Regala; Victoria Lao; Miriam Land; Loren Hauser; Alan B. Hooper; Martin G. Klotz; Jeanette M. Norton; Luis A. Sayavedra-Soto; Dave M. Arciero; Norman G. Hommes; Mark Whittaker; Daniel J. Arp

Nitrosomonas europaea (ATCC 19718) is a gram-negative obligate chemolithoautotroph that can derive all its energy and reductant for growth from the oxidation of ammonia to nitrite. Nitrosomonas europaea participates in the biogeochemical N cycle in the process of nitrification. Its genome consists of a single circular chromosome of 2,812,094 bp. The GC skew analysis indicates that the genome is divided into two unequal replichores. Genes are distributed evenly around the genome, with approximately 47% transcribed from one strand and approximately 53% transcribed from the complementary strand. A total of 2,460 protein-encoding genes emerged from the modeling effort, averaging 1,011 bp in length, with intergenic regions averaging 117 bp. Genes necessary for the catabolism of ammonia, energy and reductant generation, biosynthesis, and CO(2) and NH(3) assimilation were identified. In contrast, genes for catabolism of organic compounds are limited. Genes encoding transporters for inorganic ions were plentiful, whereas genes encoding transporters for organic molecules were scant. Complex repetitive elements constitute ca. 5% of the genome. Among these are 85 predicted insertion sequence elements in eight different families. The strategy of N. europaea to accumulate Fe from the environment involves several classes of Fe receptors with more than 20 genes devoted to these receptors. However, genes for the synthesis of only one siderophore, citrate, were identified in the genome. This genome has provided new insights into the growth and metabolism of ammonia-oxidizing bacteria.


Nature Genetics | 2005

The complete genome sequence of Francisella tularensis, the causative agent of tularemia.

Pär Larsson; Petra C. F. Oyston; Patrick Chain; May C. Chu; Melanie Duffield; Hans-Henrik Fuxelius; Emilio Garcia; Greger Hälltorp; Daniel Johansson; Karen E. Isherwood; Peter D. Karp; Eva Larsson; Ying Liu; Stephen L. Michell; Joann L. Prior; Richard G. Prior; Stephanie Malfatti; Anders Sjöstedt; Kerstin Svensson; Nick Thompson; Lisa M. Vergez; Jonathan Wagg; Brendan W. Wren; Luther E. Lindler; Siv G. E. Andersson; Mats Forsman; Richard W. Titball

Francisella tularensis is one of the most infectious human pathogens known. In the past, both the former Soviet Union and the US had programs to develop weapons containing the bacterium. We report the complete genome sequence of a highly virulent isolate of F. tularensis (1,892,819 bp). The sequence uncovers previously uncharacterized genes encoding type IV pili, a surface polysaccharide and iron-acquisition systems. Several virulence-associated genes were located in a putative pathogenicity island, which was duplicated in the genome. More than 10% of the putative coding sequences contained insertion-deletion or substitution mutations and seemed to be deteriorating. The genome is rich in IS elements, including IS630 Tc-1 mariner family transposons, which are not expected in a prokaryote. We used a computational method for predicting metabolic pathways and found an unexpectedly high proportion of disrupted pathways, explaining the fastidious nutritional requirements of the bacterium. The loss of biosynthetic pathways indicates that F. tularensis is an obligate host-dependent bacterium in its natural life cycle. Our results have implications for our understanding of how highly virulent human pathogens evolve and will expedite strategies to combat them.


Science | 2009

Genome Project Standards in a New Era of Sequencing

Patrick Chain; Darren Grafham; Robert S. Fulton; Michael Fitzgerald; Jessica B. Hostetler; Donna M. Muzny; J. Ali; Bruce W. Birren; David Bruce; Christian Buhay; James R. Cole; Yan Ding; Shannon Dugan; Dawn Field; George M Garrity; Richard A. Gibbs; Tina Graves; Cliff Han; Scott H. Harrison; Sarah K. Highlander; Philip Hugenholtz; H. M. Khouri; Chinnappa D. Kodira; Eugene Kolker; Nikos C. Kyrpides; D. Lang; Alla Lapidus; S. A. Malfatti; Victor Markowitz; T. Metha

More detailed sequence standards that keep up with revolutionary sequencing technologies will aid the research community in evaluating data. For over a decade, genome sequences have adhered to only two standards that are relied on for purposes of sequence analysis by interested third parties (1, 2). However, ongoing developments in revolutionary sequencing technologies have resulted in a redefinition of traditional whole-genome sequencing that requires reevaluation of such standards. With commercially available 454 pyrosequencing (followed by Illumina, SOLiD, and now Helicos), there has been an explosion of genomes sequenced under the moniker “draft”; however, these can be very poor quality genomes (due to inherent errors in the sequencing technologies, and the inability of assembly programs to fully address these errors). Further, one can only infer that such draft genomes may be of poor quality by navigating through the databases to find the number and type of reads deposited in sequence trace repositories (and not all genomes have this available), or to identify the number of contigs or genome fragments deposited to the database. The difficulty in assessing the quality of such deposited genomes has created some havoc for genome analysis pipelines and has contributed to many wasted hours. Exponential leaps in raw sequencing capability and greatly reduced prices have further skewed the time- and cost-ratios of draft data generation versus the painstaking process of improving and finishing a genome. The result is an ever-widening gap between drafted and finished genomes that only promises to continue (see the figure, page 236); hence, there is an urgent need to distinguish good from poor data sets.


The ISME Journal | 2012

Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to Deepwater Horizon oil spill.

Olivia U. Mason; Terry C. Hazen; Sharon E. Borglin; Patrick Chain; Eric A. Dubinsky; Julian L. Fortney; James Han; Hoi-Ying N. Holman; Jenni Hultman; Regina Lamendella; Rachel Mackelprang; Stephanie Malfatti; Lauren M. Tom; Susannah G. Tringe; Tanja Woyke; Jizhong Zhou; Edward M. Rubin; Janet K. Jansson

The Deepwater Horizon oil spill in the Gulf of Mexico resulted in a deep-sea hydrocarbon plume that caused a shift in the indigenous microbial community composition with unknown ecological consequences. Early in the spill history, a bloom of uncultured, thus uncharacterized, members of the Oceanospirillales was previously detected, but their role in oil disposition was unknown. Here our aim was to determine the functional role of the Oceanospirillales and other active members of the indigenous microbial community using deep sequencing of community DNA and RNA, as well as single-cell genomics. Shotgun metagenomic and metatranscriptomic sequencing revealed that genes for motility, chemotaxis and aliphatic hydrocarbon degradation were significantly enriched and expressed in the hydrocarbon plume samples compared with uncontaminated seawater collected from plume depth. In contrast, although genes coding for degradation of more recalcitrant compounds, such as benzene, toluene, ethylbenzene, total xylenes and polycyclic aromatic hydrocarbons, were identified in the metagenomes, they were expressed at low levels, or not at all based on analysis of the metatranscriptomes. Isolation and sequencing of two Oceanospirillales single cells revealed that both cells possessed genes coding for n-alkane and cycloalkane degradation. Specifically, the near-complete pathway for cyclohexane oxidation in the Oceanospirillales single cells was elucidated and supported by both metagenome and metatranscriptome data. The draft genome also included genes for chemotaxis, motility and nutrient acquisition strategies that were also identified in the metagenomes and metatranscriptomes. These data point towards a rapid response of members of the Oceanospirillales to aliphatic hydrocarbons in the deep sea.


Proceedings of the National Academy of Sciences of the United States of America | 2001

The complete sequence of the 1,683-kb pSymB megaplasmid from the N2-fixing endosymbiont Sinorhizobium meliloti

Turlough M. Finan; Stefan Weidner; Kim Wong; Jens Buhrmester; Patrick Chain; Frank J. Vorhölter; Ismael Hernández-Lucas; Anke Becker; Alison Cowie; Jérôme Gouzy; Brian Golding; Alfred Pühler

Analysis of the 1,683,333-nt sequence of the pSymB megaplasmid from the symbiotic N2-fixing bacterium Sinorhizobium meliloti revealed that the replicon has a high gene density with a total of 1,570 protein-coding regions, with few insertion elements and regions duplicated elsewhere in the genome. The only copies of an essential arg-tRNA gene and the minCDE genes are located on pSymB. Almost 20% of the pSymB sequence carries genes encoding solute uptake systems, most of which were of the ATP-binding cassette family. Many previously unsuspected genes involved in polysaccharide biosynthesis were identified and these, together with the two known distinct exopolysaccharide synthesis gene clusters, show that 14% of the pSymB sequence is dedicated to polysaccharide synthesis. Other recognizable gene clusters include many involved in catabolic activities such as protocatechuate utilization and phosphonate degradation. The functions of these genes are consistent with the notion that pSymB plays a major role in the saprophytic competence of the bacteria in the soil environment.

Collaboration


Dive into the Patrick Chain's collaboration.

Top Co-Authors

Avatar

Lynne Goodwin

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Natalia Ivanova

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Miriam Land

University of California

View shared research outputs
Top Co-Authors

Avatar

David Bruce

Joint Genome Institute

View shared research outputs
Top Co-Authors

Avatar

Amy Chen

Joint Genome Institute

View shared research outputs
Top Co-Authors

Avatar

Amrita Pati

Joint Genome Institute

View shared research outputs
Top Co-Authors

Avatar

Alla Lapidus

University of California

View shared research outputs
Top Co-Authors

Avatar

Cliff Han

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Loren Hauser

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Matt Nolan

Joint Genome Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge