Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrick De Boever is active.

Publication


Featured researches published by Patrick De Boever.


Environmental Microbiology | 2008

Use of the rotating wall vessel technology to study the effect of shear stress on growth behaviour of Pseudomonas aeruginosa PA01

Aurélie Crabbé; Patrick De Boever; Rob Van Houdt; Hugo Moors; Max Mergeay; Pierre Cornelis

The biofilm phenotype of Pseudomonas aeruginosa enables this opportunistic pathogen to develop resistance to the immune system and antimicrobial agents. Pseudomonas aeruginosa biofilms are generated under varying levels of shear stress, depending on the infection site. In the lung mucus of cystic fibrosis (CF) patients, P. aeruginosa forms matrix-enclosed microcolonies which cause chronic infections representing the major cause of mortality in CF patients. The lung mucus of CF patients is probably characterized by low fluid shear as the main shear-causing factor, i.e. mucociliary clearance, is absent. In this study, the influence of fluid shear on the growth behaviour of P. aeruginosa PA01 was investigated using a low-shear suspension culture device, the rotating wall vessel (RWV). Cultivation in low shear induced a self-aggregating phenotype of P. aeruginosa PA01, resulting in the formation of biofilms in suspension similar to what has been described in CF mucus. The addition of a ceramic bead to the culture medium in the RWV created a higher-shear condition which led to the formation of surface-attached rather than suspension biofilms. In low-shear culture conditions, a significant increase of the rhl N-butanoyl-l-homoserine lactone (C(4)-HSL) directed quorum sensing (QS) system, and the psl polysaccharide synthetic locus was demonstrated using gene expression analysis. Accordingly, the low-shear condition induced a higher production of rhamnolipids, which is controlled by the C(4)-HSL QS-system and is known to play a role in CF lung pathology. These results indicate that fluid shear has an impact on the growth phenotype of P. aeruginosa which might play a role in CF lung infections caused by this bacterium.


Environmental Health Perspectives | 2015

In Utero Fine Particle Air Pollution and Placental Expression of Genes in the Brain-Derived Neurotrophic Factor Signaling Pathway: An ENVIRONAGE Birth Cohort Study.

Nelly D. Saenen; Michelle Plusquin; Esmée Bijnens; Bram G. Janssen; Wilfried Gyselaers; Bianca Cox; Frans Fierens; Geert Molenberghs; Joris Penders; Karen Vrijens; Patrick De Boever; Tim S. Nawrot

Background Developmental processes in the placenta and the fetal brain are shaped by the same biological signals. Recent evidence suggests that adaptive responses of the placenta to the maternal environment may influence central nervous system development. Objectives We studied the association between in utero exposure to fine particle air pollution with a diameter ≤ 2.5 μm (PM2.5) and placental expression of genes implicated in neural development. Methods Expression of 10 target genes in the brain-derived neurotrophic factor (BDNF) signaling pathway were quantified in placental tissue of 90 mother–infant pairs from the ENVIRONAGE birth cohort using quantitative real-time polymerase chain reaction. Trimester-specific PM2.5 exposure levels were estimated for each mother’s home address using a spatiotemporal model. Mixed-effects models were used to evaluate the association between the target genes and PM2.5 exposure measured in different time windows of pregnancy. Results A 5-μg/m3 increase in residential PM2.5 exposure during the first trimester of pregnancy was associated with a 15.9% decrease [95% confidence interval (CI): –28.7, –3.2%, p = 0.015] in expression of placental BDNF at birth. The corresponding estimate for synapsin 1 (SYN1) was a 24.3% decrease (95% CI: –42.8, –5.8%, p = 0.011). Conclusions Placental expression of BDNF and SYN1, two genes implicated in normal neurodevelopmental trajectories, decreased with increasing in utero exposure to PM2.5. Future studies are needed to confirm our findings and evaluate the potential relevance of associations between PM2.5 and placental expression of BDNF and SYN1 on neurodevelopment. We provide the first molecular epidemiological evidence concerning associations between in utero fine particle air pollution exposure and the expression of genes that may influence neurodevelopmental processes. Citation Saenen ND, Plusquin M, Bijnens E, Janssen BG, Gyselaers W, Cox B, Fierens F, Molenberghs G, Penders J, Vrijens K, De Boever P, Nawrot TS. 2015. In utero fine particle air pollution and placental expression of genes in the brain-derived neurotrophic factor signaling pathway: an ENVIRONAGE Birth Cohort Study. Environ Health Perspect 123:834–840; http://dx.doi.org/10.1289/ehp.1408549


Environmental Health Perspectives | 2013

Retinal Microvascular Responses to Short-Term Changes in Particulate Air Pollution in Healthy Adults

Tijs Louwies; Luc Int Panis; Michal Kicinski; Patrick De Boever; Tim S. Nawrot

Background: Microcirculation plays an important role in the physiology of cardiovascular health. Air pollution is an independent risk factor for the development and progression of cardiovascular diseases, but the number of studies on the relation between air pollution and the microcirculation is limited. Objectives: We examined the relationship between short-term changes in air pollution and microvascular changes. Methods: We measured retinal microvasculature using fundus image analysis in a panel of 84 healthy adults (52% female), 22–63 years of age, during January–May 2012. Blood vessels were measured as central retinal arteriolar/venular equivalent (CRAE/CRVE), with a median of 2 measurements (range, 1–3). We used monitoring data on particulate air pollution (PM10) and black carbon (BC). Mixed-effect models were used to estimate associations between CRAE/CRVE and exposure to PM10 and BC using various exposure windows. Results: CRAE and CRVE were associated with PM10 and BC concentrations, averaged over the 24 hr before the retinal examinations. Each 10-µg/m3 increase in PM10 was associated with a 0.93-µm decrease (95% CI: –1.42, –0.45; p = 0.0003) in CRAE and a 0.86-µm decrease (95% CI: –1.42, –0.30; p = 0.004) in CRVE after adjusting for individual characteristics and time varying conditions such as ambient temperature. Each 1-µg/m3 increase in BC was associated with a 1.84-µm decrease (95% CI: –3.18, –0.51; p < 0.001) in CRAE. Conclusions: Our findings suggest that the retinal microvasculature responds to short-term changes in air pollution levels. These results support a mechanistic pathway through which air pollution can act as a trigger of cardiovascular events at least in part through effects on the microvasculature. Citation: Louwies T, Int Panis L, Kicinski M, De Boever P, Nawrot TS. 2013. Retinal microvascular responses to short-term changes in particulate air pollution in healthy adults. Environ Health Perspect 121:1011–1016; http://dx.doi.org/10.1289/ehp.1205721


Inhalation Toxicology | 2012

Changed gene expression in brains of mice exposed to traffic in a highway tunnel.

Inge Bos; Patrick De Boever; Jan Emmerechts; Jurgen Buekers; Jeroen Vanoirbeek; Romain Meeusen; Martine Van Poppel; Benoit Nemery; Tim S. Nawrot; Luc Int Panis

Context: Air pollution has been suggested to have an impact on the brain. Objective: The objective was to assess the expression of inflammation-related genes in the brains of mice that had been exposed for 5 days to a well-characterized traffic-polluted environment, i.e. a highway tunnel. Materials and methods: Twenty C57BL6 mice were randomly allocated to four groups of five animals. Two groups were placed in the tunnel for 5 days (mean PM 2.5, 55.1 μg/m3, mean elemental carbon, EC 13.9 μg/m3) in cages with or without filter, two control groups were housed outside the tunnel. Animals were assessed within 24 hours after the last exposure day. Lung injury and inflammation were assessed by bronchoalveolar lavage (BAL) and histology. Blood leukocytosis and coagulation parameters were determined in peripheral blood. The olfactory bulb and hippocampus were analyzed for changes in expression of inflammatory genes and brain-derived neurotrophic factor (BDNF). Results and discussion: Although carbon particles were abundant in alveolar macrophages of exposed mice and absent in non-exposed mice, there was no evidence of pulmonary or systemic inflammation. There was an increased expression of genes involved in inflammatory response (COX2, NOS2, NOS3, and NFE2L2) in the hippocampus of the exposed mice. In the olfactory bulb, a downregulation was found for IL1α, COX2, NFE2L2, IL6, and BDNF. Conclusion: Although this short-term exposure to traffic-related pollution did not induce pulmonary or systemic inflammation, the expression of inflammatory genes was affected in different brain areas. The decreased BDNF expression in the olfactory bulb suggests lower brain neurotrophic support in response to traffic-related air pollution.


PLOS ONE | 2015

Carotid Intima-Media Thickness, a Marker of Subclinical Atherosclerosis, and Particulate Air Pollution Exposure: the Meta-Analytical Evidence

Eline B. Provost; Narjes Madhloum; Luc Int Panis; Patrick De Boever; Tim S. Nawrot

Introduction Studies on the association between atherosclerosis and long-term exposure to ambient air pollution suggest that carotid intima-media thickness (CIMT), a marker of subclinical atherosclerosis, is positively associated with particulate matter (PM) exposure. However, there is heterogeneity between the different studies concerning the magnitude of this association. We performed a meta-analysis to determine the strength of the association between CIMT and particulate air pollution. Methods We queried PubMed citation database and Web of Knowledge up to March 2015 in order to identify studies on CIMT and particulate air pollution. Two investigators selected and computerized all relevant information, independently. Eight of the reviewed epidemiological publications provided sufficient details and met our inclusion criteria. Descriptive and quantitative information was extracted from each selected study. The meta-analysis included 18,349 participants from eight cohorts for the cross-sectional association between CIMT and PM and 7,268 participants from three cohorts for the longitudinal analysis on CIMT progression and PM exposure. Results The average exposure to PM2.5 in the different study populations ranged from 4.1 to 20.8 µg/m3 and CIMT averaged (SD) 0.73 (0.14) mm. We computed a pooled estimate from a random-effects model. In the combined cross-sectional studies, an increase of 5 µg/m3 PM2.5 was associated with a 1.66% (95% CI: 0.86 to 2.46; P<0.0001) thicker CIMT, which corresponds to an average increase of 12.1 µm. None of the studies moved the combined estimate outside the confidence interval of the overall estimate. A funnel plot suggested absence of publication bias. The combined longitudinal estimate showed for each 5 µg/m3 higher PM2.5 exposure, a 1.04 µm per year (95% CI: 0.01 to 2.07; P=0.048) greater CIMT progression. Conclusion Our meta-analysis supports the evidence of a positive association between CIMT, a marker of subclinical atherosclerosis, and long-term exposure to particulate air pollution.


Environmental Health Perspectives | 2016

Lower Placental Leptin Promoter Methylation in Association with Fine Particulate Matter Air Pollution during Pregnancy and Placental Nitrosative Stress at Birth in the ENVIRONAGE Cohort.

Nelly D. Saenen; Karen Vrijens; Bram G. Janssen; Harry A. Roels; Kristof Y. Neven; Wim Vanden Berghe; Wilfried Gyselaers; Charlotte Vanpoucke; Wouter Lefebvre; Patrick De Boever; Tim S. Nawrot

Background: Particulate matter with a diameter ≤ 2.5 μm (PM2.5) affects human fetal development during pregnancy. Oxidative stress is a putative mechanism by which PM2.5 may exert its effects. Leptin (LEP) is an energy-regulating hormone involved in fetal growth and development. Objectives: We investigated in placental tissue whether DNA methylation of the LEP promoter is associated with PM2.5 and whether the oxidative/nitrosative stress biomarker 3-nitrotyrosine (3-NTp) is involved. Methods: LEP DNA methylation status of 361 placentas from the ENVIRONAGE birth cohort was assessed using bisulfite-PCR-pyrosequencing. Placental 3-NTp (n = 313) was determined with an ELISA assay. Daily PM2.5 exposure levels were estimated for each mother’s residence, accounting for residential mobility during pregnancy, using a spatiotemporal interpolation model. Results: After adjustment for a priori chosen covariates, placental LEP methylation was 1.4% lower (95% CI: –2.7, –0.19%) in association with an interquartile range increment (7.5 μg/m3) in second-trimester PM2.5 exposure and 0.43% lower (95% CI: –0.85, –0.02%) in association with a doubling of placental 3-NTp content. Conclusions: LEP methylation status in the placenta was negatively associated with PM2.5 exposure during the second trimester, and with placental 3-NTp, a marker of oxidative/nitrosative stress. Additional research is needed to confirm our findings and to assess whether oxidative/nitrosative stress might contribute to associations between PM2.5 and placental epigenetic events. Potential consequences for health during the neonatal period and later in life warrant further exploration. Citation: Saenen ND, Vrijens K, Janssen BG, Roels HA, Neven KY, Vanden Berghe W, Gyselaers W, Vanpoucke C, Lefebvre W, De Boever P, Nawrot TS. 2017. Lower placental leptin promoter methylation in association with fine particulate matter air pollution during pregnancy and placental nitrosative stress at birth in the ENVIRONAGE cohort. Environ Health Perspect 125:262–268; http://dx.doi.org/10.1289/EHP38


Environment International | 2015

Blood pressure changes in association with black carbon exposure in a panel of healthy adults are independent of retinal microcirculation

Tijs Louwies; Tim S. Nawrot; Bianca Cox; Evi Dons; Joris Penders; Eline B. Provost; Luc Int Panis; Patrick De Boever

Exposure to ambient particulate matter and elevated blood pressure are risk factors for cardiovascular morbidity and mortality. Microvascular changes might be an important pathway in explaining the association between air pollution and blood pressure. The objective of the study was to evaluate the role of the retinal microcirculation in the association between black carbon (BC) exposure and blood pressure. We estimated subchronic BC exposure based on 1-week personal measurements (μ-Aethalometer, AethLabs) in 55 healthy nurses. Blood pressure and retinal microvasculature were measured on four different days (range: 2-4) during this week. Subchronic BC exposure averaged (± SD) 1334±631ng/m(3) and ranged from 338ng/m(3) to 3889ng/m(3). An increased exposure of 631ng/m(3) BC was associated with a 2.77mmHg (95% CI: 0.39 to 5.15, p=0.027) increase in systolic blood pressure, a 2.35mmHg (95% CI: 0.52 to 4.19, p=0.016) increase in diastolic blood pressure and with 5.65μm (95% CI: 1.33 to 9.96, p=0.014) increase in central retinal venular equivalent. Mediation analysis failed to reveal an effect of retinal microvasculature in the association between blood pressure and subchronic BC exposure. In conclusion, we found a positive association between blood pressure and subchronic black carbon exposure in healthy adults. This finding adds evidence to the association between black carbon exposure and cardiovascular health effects, with elevated blood pressure as a plausible intermediate effector. Our results suggest that the changes in a persons blood pressure as a result of subchronic black carbon exposure operate independently of the retinal microcirculation.


Toxicology Letters | 2014

Gene expression profiles reveal distinct immunological responses of cobalt and cerium dioxide nanoparticles in two in vitro lung epithelial cell models.

Sandra Verstraelen; Sylvie Remy; Eudald Casals; Patrick De Boever; Hilda Witters; Antonietta Gatti; Victor Puntes; Inge Nelissen

Fragmentary knowledge exists on cellular signaling responses underlying possible adverse health effects of CoO- and CeO2-nanoparticles (NP)s after inhalation. We aimed to perform a time kinetic study of gene expression profiles induced by these NPs in alveolar A549 and bronchial BEAS-2B epithelial cells, and investigated possible immune system modulation. The kinetics of the cell responses induced by the NPs were different between the lung epithelial models. Both CoO- and CeO2-NP exposure induced mainly downregulation of gene transcription. BEAS-2B cells were found to be more sensitive, as they showed a higher number of differentially expressed transcripts (DET) at a 10-fold lower NP-concentration than A549 cells. Hierarchical clustering of all DET indicated that the transcriptional responses were heterogeneous among the two cell types and two NPs. Between 1% and 14% DET encoding markers involved in immune processes were observed. The transcriptional impact of the metal oxide NPs appeared to be cell-dependent, both at the general and immune response level, whereas each lung epithelial cell model responded differently to the two NP types. Thus, the study provides gene expression markers and immune processes involved in CoO- and CeO2-NP-induced toxicity, and demonstrates the usefulness of comprehensive-omics studies to differentiate between NP responses.


PLOS ONE | 2016

Whole-Genome Saliva and Blood DNA Methylation Profiling in Individuals with a Respiratory Allergy.

Sabine A.S. Langie; Katarzyna Szarc vel Szic; Ken Declerck; Sophie Traen; Gudrun Koppen; Guy Van Camp; Greet Schoeters; Wim Vanden Berghe; Patrick De Boever

The etiology of respiratory allergies (RA) can be partly explained by DNA methylation changes caused by adverse environmental and lifestyle factors experienced early in life. Longitudinal, prospective studies can aid in the unravelment of the epigenetic mechanisms involved in the disease development. High compliance rates can be expected in these studies when data is collected using non-invasive and convenient procedures. Saliva is an attractive biofluid to analyze changes in DNA methylation patterns. We investigated in a pilot study the differential methylation in saliva of RA (n = 5) compared to healthy controls (n = 5) using the Illumina Methylation 450K BeadChip platform. We evaluated the results against the results obtained in mononuclear blood cells from the same individuals. Differences in methylation patterns from saliva and mononuclear blood cells were clearly distinguishable (PAdj<0.001 and |Δβ|>0.2), though the methylation status of about 96% of the cg-sites was comparable between peripheral blood mononuclear cells and saliva. When comparing RA cases with healthy controls, the number of differentially methylated sites (DMS) in saliva and blood were 485 and 437 (P<0.05 and |Δβ|>0.1), respectively, of which 216 were in common. The methylation levels of these sites were significantly correlated between blood and saliva. The absolute levels of methylation in blood and saliva were confirmed for 3 selected DMS in the PM20D1, STK32C, and FGFR2 genes using pyrosequencing analysis. The differential methylation could only be confirmed for DMS in PM20D1 and STK32C genes in saliva. We show that saliva can be used for genome-wide methylation analysis and that it is possible to identify DMS when comparing RA cases and healthy controls. The results were replicated in blood cells of the same individuals and confirmed by pyrosequencing analysis. This study provides proof-of-concept for the applicability of saliva-based whole-genome methylation analysis in the field of respiratory allergy.


Sports Medicine | 2014

Physical Activity, Air Pollution and the Brain

Inge Bos; Patrick De Boever; Luc Int Panis; Romain Meeusen

This review introduces an emerging research field that is focused on studying the effect of exposure to air pollution during exercise on cognition, with specific attention to the impact on concentrations of brain-derived neurotrophic factor (BDNF) and inflammatory markers. It has been repeatedly demonstrated that regular physical activity enhances cognition, and evidence suggests that BDNF, a neurotrophin, plays a key role in the mechanism. Today, however, air pollution is an environmental problem worldwide and the high traffic density, especially in urban environments and cities, is a major cause of this problem. During exercise, the intake of air pollution increases considerably due to an increased ventilation rate and particle deposition fraction. Recently, air pollution exposure has been linked to adverse effects on the brain such as cognitive decline and neuropathology. Inflammation and oxidative stress seem to play an important role in inducing these health effects. We believe that there is a need to investigate whether the well-known benefits of regular physical activity on the brain also apply when physical activity is performed in polluted air. We also report our findings about exercising in an environment with ambient levels of air pollutants. Based on the latter results, we hypothesize that traffic-related air pollution exposure during exercise may inhibit the positive effect of exercise on cognition.

Collaboration


Dive into the Patrick De Boever's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luc Int Panis

Flemish Institute for Technological Research

View shared research outputs
Top Co-Authors

Avatar

Greet Schoeters

Flemish Institute for Technological Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Evi Dons

Flemish Institute for Technological Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nandu Goswami

Medical University of Graz

View shared research outputs
Researchain Logo
Decentralizing Knowledge