Patrick Dutournié
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Patrick Dutournié.
Water Research | 2013
Sébastien Déon; Patrick Dutournié; Patrick Fievet; Lionel Limousy; Patrick Bourseau
One of the major difficulties for the prediction of separation performances in the case of multi-ionic mixtures nanofiltration lies in the description of the concentration polarization phenomenon. Usual models available in literature do not take account of the polarization phenomenon or only describe it cursorily. Very few studies dedicated to the understanding and the specific description of the concentration polarization phenomenon are available in literature and a 2-D multi-ionic model describing the layer heterogeneity along the membrane length has never been proposed yet. The model used in the present work, called Pore and Polarization Transport Model (PPTM), allows an accurate description of the concentration polarization layer occurring during the filtration of multi-ionic solutions by taking account of the radial electromigrative transport in the layer, the turbulence, as well as the axial heterogeneity. In this context, the present paper aims at proposing a numerical investigation of the influence of operating conditions on the behavior of the polarization layer occurring at the membrane vicinity. The input parameters governing the transport through the membrane have been assessed in a previous study in the same experimental conditions so that only the polarization layer is investigated here. The proposed model which was previously validated on experimental observed rejection curves is then used to understand how operating conditions, such as applied pressure, feed flow-rate, or divalent ion proportion, govern the polarization phenomenon. For this purpose, concentration and thickness axial profiles along the membrane length and radial profiles within the polarization layer are investigated for various conditions. Finally, the impact of the type of divalent ion and the number of ions is also studied on various mixtures.
Advances in Materials Science and Engineering | 2015
Patrick Dutournié; Ali Said; T. Jean Daou; Jacques Bikaï; Lionel Limousy
Hydraulic permeability measurements are performed on low cut-off Na-mordenite (MOR-type zeolites) membranes after a mild alkaline treatment. A decrease of the hydraulic permeability is systematically observed. Contact angle measurements are carried out (with three polar liquids) on Na-mordenite films seeded onto alumina plates (flat membranes). A decrease of the contact angles is observed after the alkaline treatment for the three liquids. According to the theory of Lifshitz-van der Waals interactions in condensated state, surface modifications are investigated and a variation of the polar component of the material surface tension is observed. After the alkaline treatment, the electron-donor contribution (mainly due to the two remaining lone electron pairs of the oxygen atoms present in the zeolite extra frameworks) decreases and an increase of the electron-receptor contribution is observed and quantified. The contribution of the polar component to the surface tension is attributed to the presence of surface defaults, which increase the surface hydrophilicity. The estimated modifications of the surface interaction energy between the solvent (water) and the Na-mordenite active layer are in good agreement with the decrease of the hydraulic permeability observed after a mild alkaline treatment.
Materials Research-ibero-american Journal of Materials | 2013
Lucia Blas; Sophie Dorge; Nabila Zouaoui; Arnold Lambert; Patrick Dutournié
Chemical Looping Combustion is a promising technology for clean power generation with integrated CO2 capture. In this process the oxygen required for combustion is provided by a metal oxide. This work deals with the development of an experimental procedure to study performances of an oxygen carrier during oxidation/reduction cycles and the influence of the oxidation step on its behaviour. Tests were performed in a laboratory fixed bed reactor, with NiO/NiAl2O4, a promising oxygen carrier, and CO as fuel. Two different protocols of oxidation were studied. Results reveal that the oxidation step conditions can change the performances of the oxygen carrier. A significant decrease in total reduction capacity was observed using the regeneration step at high temperature due to structural changes in particles. SEM analysis reveals that particle surface contains different crystallites according to this procedure. With the second procedure (oxidation in temperature ramp), nickel is partially agglomerated.
Beilstein Journal of Nanotechnology | 2016
Guillaume Rioland; Patrick Dutournié; Delphine Faye; T. Jean Daou; Joël Patarin
Zeolite pellets containing 5 wt % of binder (methylcellulose or sodium metasilicate) were formed with a hydraulic press. This paper describes a mathematical model to predict the mechanical properties (uniaxial and diametric compression) of these pellets for arbitrary dimensions (height and diameter) using a design of experiments (DOE) methodology. A second-degree polynomial equation including interactions was used to approximate the experimental results. This leads to an empirical model for the estimation of the mechanical properties of zeolite pellets with 5 wt % of binder. The model was verified by additional experimental tests including pellets of different dimensions created with different applied pressures. The optimum dimensions were found to be a diameter of 10–23 mm, a height of 1–3.5 mm and an applied pressure higher than 200 MPa. These pellets are promising for technological uses in molecular decontamination for aerospace-based applications.
International Journal of Membrane Science and Technology | 2014
Sébastien Déon; Patrick Dutournié; Lionel Limousy; Patrick Bourseau; Patrick Fievet
In this study, a transport model is used to characterize structural and physico-chemical changes in a nanofiltration membrane during the filtration of ionic mixtures. The membrane state is analyzed by a set of four model parameters identified from glucose and salts filtration: the membrane water permeability (Lp), the mean pore radius (rp), the membrane charge density (Xd), and the dielectric constant of the solution inside pores ( p). The study of these structural and physico-chemical properties allows us to determine if deterioration or fouling occurred during filtration. Two distinct identification procedures from filtration of synthetic solutions are investigated in this paper. One is based on the filtration of single salt solutions, whereas the other lies in parameters identification from mixtures containing at least three ions. These methods are applied here to characterize influence of fouling deposit formation and membrane cleaning.
Aiche Journal | 2007
Sébastien Déon; Patrick Dutournié; Patrick Bourseau
Separation and Purification Technology | 2009
Sébastien Déon; Patrick Dutournié; Lionel Limousy; Patrick Bourseau
Chemical Engineering Journal | 2012
Sébastien Déon; Aurélie Escoda; Patrick Fievet; Patrick Dutournié; Patrick Bourseau
Aiche Journal | 2011
Sébastien Déon; Patrick Dutournié; Lionel Limousy; Patrick Bourseau
Industrial & Engineering Chemistry Research | 2007
Sébastien Déon; Patrick Dutournié; Patrick Bourseau