Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrick E. Chappell is active.

Publication


Featured researches published by Patrick E. Chappell.


Journal of Biological Rhythms | 2008

The circadian clock protein BMAL1 is necessary for fertility and proper testosterone production in mice.

J.D. Alvarez; Amanda Hansen; Teri Ord; Piotr Bebas; Patrick E. Chappell; Jadwiga M. Giebultowicz; Carmen J. Williams; Stuart B. Moss; Amita Sehgal

Although it is well established that the circadian clock regulates mammalian reproductive physiology, the molecular mechanisms by which this regulation occurs are not clear. The authors investigated the reproductive capacity of mice lacking Bmal1 (Arntl, Mop3), one of the central circadian clock genes. They found that both male and female Bmal1 knockout (KO) mice are infertile. Gross and microscopic inspection of the reproductive anatomy of both sexes suggested deficiencies in steroidogenesis. Male Bmal1 KO mice had low testosterone and high luteinizing hormone serum concentrations, suggesting a defect in testicular Leydig cells. Importantly, Leydig cells rhythmically express BMAL1 protein, suggesting peripheral control of testosterone production by this clock protein. Expression of steroidogenic genes was reduced in testes and other steroidogenic tissues of Bmal1 KO mice. In particular, expression of the steroidogenic acute regulatory protein (StAR) gene and protein, which regulates the rate-limiting step of steroidogenesis, was decreased in testes from Bmal1 KO mice. A direct effect of BMAL1 on StAR expression in Leydig cells was indicated by in vitro experiments showing enhancement of StAR transcription by BMAL1. Other hormonal defects in male Bmal1 KO mice suggest that BMAL1 also has functions in reproductive physiology outside of the testis. These results enhance understanding of how the circadian clock regulates reproduction.


Journal of Neuroendocrinology | 2005

Clocks and the black box: circadian influences on gonadotropin-releasing hormone secretion.

Patrick E. Chappell

Although the mechanisms underlying hypothalamic surge secretion of gonadotropin‐releasing hormone (GnRH) in rodent models have remained enduring mysteries in the field of neuroendocrinology, the identities of two fundamental constituents are clear. Elevated ovarian oestrogen, in conjunction with circadian signals, combine to elicit GnRH surges that are confined to the afternoon of the proestrus phase. The phenomenon of oestrogen positive feedback, although extensively investigated, is not completely understood, and may involve the actions of this steroid directly on GnRH perikarya, as well as on the activity of neuronal afferents. Additionally, whereas many studies have focused upon regulation of GnRH surge secretion by the neuroanatomical biological clock, the suprachiasmatic nucleus, it remains unclear why this daily signal is capable of stimulating surges only in the presence of oestrogen. This review re‐examines multiple models of circadian control of reproductive neurosecretion, armed with the recent characterisation of the intracellular transcriptional feedback loops that comprise the circadian clock, and attempts to evaluate previous studies on this topic within the context of these new discoveries. Recent advances reveal the presence of oscillating circadian clocks throughout the central nervous system and periphery, including the anterior pituitary and hypothalamus, raising the possibility that synchrony between multiple cellular clocks may be involved in GnRH surge generation. Current studies are reviewed that demonstrate the necessity of functional clock oscillations in generating GnRH pulsatile secretion in vitro, suggesting that a GnRH‐specific intracellular circadian clock may underlie GnRH surges as well. Multiple possible steroidal and neuronal contributions to GnRH surge generation are discussed, in addition to how these signals of disparate origin may be integrated at the cellular level to initiate this crucial reproductive event.


Molecular and Cellular Endocrinology | 2012

Clocks on top: The role of the circadian clock in the hypothalamic and pituitary regulation of endocrine physiology

Karen J. Tonsfeldt; Patrick E. Chappell

Recent strides in circadian biology over the last several decades have allowed researchers new insight into how molecular circadian clocks influence the broader physiology of mammals. Elucidation of transcriptional feedback loops at the heart of endogenous circadian clocks has allowed for a deeper analysis of how timed cellular programs exert effects on multiple endocrine axes. While the full understanding of endogenous clocks is currently incomplete, recent work has re-evaluated prior findings with a new understanding of the involvement of these cellular oscillators, and how they may play a role in constructing rhythmic hormone synthesis, secretion, reception, and metabolism. This review addresses current research into how multiple circadian clocks in the hypothalamus and pituitary receive photic information from oscillators within the hypothalamic suprachiasmatic nucleus (SCN), and how resultant hypophysiotropic and pituitary hormone release is then temporally gated to produce an optimal result at the cognate target tissue. Special emphasis is placed not only on neural communication among the SCN and other hypothalamic nuclei, but also how endogenous clocks within the endocrine hypothalamus and pituitary may modulate local hormone synthesis and secretion in response to SCN cues. Through evaluation of a larger body of research into the impact of circadian biology on endocrinology, we can develop a greater appreciation into the importance of timing in endocrine systems, and how understanding of these endogenous rhythms can aid in constructing appropriate therapeutic treatments for a variety of endocrinopathies.


Journal of Neuroendocrinology | 2011

Oestrogen Induces Rhythmic Expression of the Kisspeptin-1 Receptor GPR54 in Hypothalamic Gonadotrophin-Releasing Hormone-Secreting GT1-7 Cells

Karen J. Tonsfeldt; Cheri P. Goodall; Kristin Latham; Patrick E. Chappell

Oestrogen‐stimulated preovulatory gonadotrophin surges are temporally regulated in a way that remains not fully understood. Mammalian ovulation requires surges of gonadotrophin‐releasing hormone (GnRH), released from specialised neurones in the hypothalamus. Surge regulation is mediated by ovarian oestrogen (17β‐oestradiol; E2) feedback‐acting as a negative signal until the early afternoon of the pro‐oestrous phase, at which point it stimulates robust increases in GnRH release. Multiple lines of evidence suggest a role for the circadian clock in surge generation, although the presence of endogenous oscillators in several neuronal populations throughout the mediobasal hypothalamus complicates an elucidation of the underlying mechanisms of circadian regulation. In the present study, we propose that endogenous oscillators within GnRH neurones are modulated by oestrogen to elicit GnRH surge secretion. One mechanism by which this may occur is through the up‐regulation of receptors of known stimulators of GnRH, such as kisspeptin’s cognate receptor, GPR54. Through analysis of mRNA and protein abundance patterns, we found that high levels of E2 elicit circadian expression profiles of GPR54 in vitro, and that disruption of endogenous GnRH oscillators of the clock dampens this effect. Additionally, although kisspeptin administration to GT1‐7 cells does not result in surge‐level secretion, we observed increased GnRH secretion from GT1‐7 cells treated with positive feedback levels of E2. These results in this in vitro neuronal model system suggest a possible mechanism whereby receptor expression levels, and thus GnRH sensitivity to kisspeptin, may change dramatically over the pro‐oestrous day. In this way, elevated ovarian E2 may increase kisspeptidergic tone at the same time as increasing GnRH neuronal sensitivity to this neuropeptide for maximal surge release.


The FASEB Journal | 2009

Circadian clock and output genes are rhythmically expressed in extratesticular ducts and accessory organs of mice

Piotr Bebas; Cheri P. Goodall; Magda Majewska; Adam Neumann; Jadwiga M. Giebultowicz; Patrick E. Chappell

Circadian clocks regulate multiple rhythms in mammalian tissues. In most organs core clock gene expression is oscillatory, with negative components Per and Cry peaking in antiphase to Bmal1. A notable exception is the testis, where clock genes seem non‐rhythmic. Earlier mammalian studies, however, did not examine clock expression patterns in accessory ductal tissue required for sperm maturation and transport. Previous studies in insects demonstrated control of sperm maturation in vas deferens by a local circadian system. Sperm ducts express clock genes and display circadian pH changes controlled by vacuolar‐type H+‐ATPase and carbonic anhydrase (CA‐II). It is unknown whether sperm‐processing rhythms are conserved beyond insects. To address this question in mice housed in a light‐dark environment, we examined temporal patterns of mPer1 and Bmal1 gene expression and protein abundance in epididymis, vas deferens, seminal vesicles, and prostate. Results demonstrate variable tissue‐specific patterns of expression of the two genes, with variations in levels of clock proteins and their nucleo‐cytoplasmic cycling observed among examined tissues. Strikingly, mPer1 and Bmal1 mRNA and proteins oscillate in antiphase in the prostate, with similar peak‐trough patterns as observed in the suprachiasmatic nuclei, the brains central clock. Genes encoding CA and a VATPase subunit, which are rhythmically expressed in sperm ducts of moths, are also rhythmic in some segments of murine sperm ducts. Our data suggest that some sperm duct segments may contain peripheral circadian systems whereas others may express clock genes in a pleiotropic manner.—Bebas, P., Goodall, C. P., Majewska, M., Neumann, A., Giebultowicz, J. M., Chappell, P. E. Circadian clock and output genes are rhythmically expressed in extratesticular ducts and accessory organs of mice. FASEB J. 23, 523–533 (2009)


Neuroendocrinology | 2006

Orexin A Induces GnRH Gene Expression and Secretion from GT1-7 Hypothalamic GnRH Neurons

Ravid Sasson; Robert K. Dearth; Rachel S. White; Patrick E. Chappell; Pamela L. Mellon

Orexin A, a recently discovered hypothalamic peptide, has been shown to have a stimulatory effect on release of gonadotropin-releasing hormone (GnRH) from rat hypothalamic explants in vitro. However, it is presently unclear whether in vivo this effect is mediated directly at the level of the GnRH neuron, or via multiple afferent neuronal connections. Therefore, in the present study, we investigated the direct action of orexin A on GnRH neurons using the immortalized GnRH-secreting GT1-7 hypothalamic cells. Orexin-1 receptor (OX1R) expression was detected in GT1-7 cells by RT-PCR and Western blot. Results showed that 0.1–1 nM orexin A, when administered in culture media for 4 h, can significantly stimulate GnRH mRNA expression in GT1-7 cells (p < 0.05). Administration of 1 µM OX1R antagonist, SB-334867, completely blocked the observed orexin A responses in these cells, indicating that orexin A stimulation of GnRH neurons is specifically through OX1R. Moreover, 0.1 nM orexin A stimulated GnRH release after 30–45 min. To examine possible signal transduction pathways involved in mediating these effects, a MEK inhibitor (UO-126), PKC inhibitor (calphostin C), and PKA inhibitor (H-89), were used, with each blocking orexin A-induced GnRH transcription and release from immortalized cells. Collectively, our results show that orexin A is capable of directly stimulating GnRH transcription and neuropeptide release from these immortalized hypothalamic neurons, and that the effects of orexin A appear to be mediated via the OX1R, coupled with activation of the PKC-, MAPK- and PKA-signaling pathways. It is suggested that the stimulatory effect of orexin A on GnRH transcription and release may also occur directly at the level of GnRH neurons in vivo.


Journal of Neuroendocrinology | 2009

Modulation of Gonadotrophin‐Releasing Hormone Secretion by an Endogenous Circadian Clock

Patrick E. Chappell; Cheri P. Goodall; Karen J. Tonsfeldt; R. S. White; E. Bredeweg; Kristin Latham

The mechanisms mediating positive feedback effects of oestradiol on pre‐ovulatory gonadotrophin releasing‐hormone (GnRH) surge generation in female mammals, although well‐explored, are still incompletely understood. In addition to binding to and signalling through classical nuclear receptor‐mediated pathways in afferent hypothalamic neurones, recent evidence suggests that ovarian steroids may use membrane‐bound receptors or nonclassical signalling pathways to directly influence cell function leading to the generation of GnRH surge secretion. We review recent investigations into the role of the endogenous molecular circadian clock on modulation of GnRH gene expression and neuropeptide secretion, and will explore potential molecular mechanisms by which ovarian steroids may directly induce secretory changes at the level of the GnRH neurone, examining closely whether circadian clock gene oscillations may be involved.


Frontiers in Endocrinology | 2012

The Changes They are A-Timed: Metabolism, Endogenous Clocks, and the Timing of Puberty

Kristen P. Tolson; Patrick E. Chappell

Childhood obesity has increased dramatically over the last several decades, particularly in industrialized countries, often accompanied by acceleration of pubertal progression and associated reproductive abnormalities (Biro et al., 2006; Rosenfield et al., 2009). The timing of pubertal initiation and progression in mammals is likely influenced by nutritional and metabolic state, leading to the hypothesis that deviations from normal metabolic rate, such as those seen in obesity, may contribute to observed alterations in the rate of pubertal progression. While several recent reviews have addressed the effects of metabolic disorders on reproductive function in general, this review will explore previous and current models of pubertal timing, outlining a potential role of endogenous timing mechanisms such as cellular circadian clocks in the initiation of puberty, and how these clocks might be altered by metabolic factors. Additionally, we will examine recently elucidated neuroendocrine regulators of pubertal progression such as kisspeptin, explore models detailing how the mammalian reproductive axis is silenced during the juvenile period and reactivated at appropriate developmental times, and emphasize how metabolic dysfunction such as childhood obesity may alter timing cues that advance or delay pubertal progression, resulting in diminished reproductive capacity.


Endocrinology | 2016

Evaluation of Immortalized AVPV- and Arcuate-Specific Neuronal Kisspeptin Cell Lines to Elucidate Potential Mechanisms of Estrogen Responsiveness and Temporal Gene Expression in Females

Dakota C. Jacobs; Rebecca E. Veitch; Patrick E. Chappell

In females, ovarian estradiol modulates kisspeptin (Kiss-1) synthesis to act as an obligatory regulator of downstream gonadotropin release in vivo, via stimulation of GnRH neurons. Changes in the ovarian condition are relayed to the neuroendocrine hypothalamus via two sexually dimorphic Kiss-1 populations, located in the anteroventral periventricular (AVPV) and arcuate nuclei, conveying estradiol-positive and -negative feedback, respectively. To elucidate how differential responsiveness to estradiol is mediated in these populations, we generated two kisspeptin-secreting cell lines from an adult kiss1-green fluorescent protein (GFP) female mouse. These lines recapitulate in vivo responsiveness to estradiol, with KTaV-3 (AVPV) cells demonstrating significantly increased kiss1 expression under high physiological estradiol exposure, whereas KTaR-1 (arcuate) cells exhibit kiss1 suppression after lower estradiol exposure. Baseline expression of estrogen receptor-α (esr1) differs significantly between KTaV-3 and KTaR-1 cells, with KTaR-1 cells demonstrating higher basal expression of esr1. Estradiol stimulation of kiss1 expression in KTaV-3 cells is modulated in a dose-dependent manner up to 25.0 pM, with less responsiveness observed at higher doses (>50.0 pM). In contrast, KTaR-1 kiss1 attenuates at lower estradiol doses (2.0-5.0 pM), returning to baseline levels at 25.0 pM and greater. Furthermore, the expression of the core clock genes bmal1 and per2 show normal rhythms in KTaV-3 cells, regardless of estradiol treatment. Conversely, KTaR-1 antiphasic transcription of bmal1 and per2 is phase delayed by low estradiol treatment. Strikingly, estradiol induces circadian rhythms of kiss1 expression only in KTaV-3 cells. Further exploration into estradiol responsiveness will reveal mechanisms responsible for the differential expression pattern demonstrated in vivo between these cell types.


BMC Veterinary Research | 2013

The expression and role of serotonin receptor 5HTR2A in canine osteoblasts and an osteosarcoma cell line

Shay Bracha; Austin K. Viall; Cheri P. Goodall; Bernadette V. Stang; Craig G. Ruaux; Bernard Séguin; Patrick E. Chappell

BackgroundThe significance of the serotonergic system in bone physiology and, more specifically, the importance of the five hydroxytryptamine receptor 2A (5HTR2A) in normal osteoblast proliferation have been previously described; however the role of serotonin in osteosarcoma remains unclear. Particularly, the expression and function of 5HTR2A in canine osteosarcoma has not yet been studied, thus we sought to determine if this indoleamine modulates cellular proliferation in vitro. Using real time quantitative reverse transcription PCR and immunoblot analyses, we explored receptor expression and signaling differences between non-neoplastic canine osteoblasts (CnOb) and an osteosarcoma cell line (COS). To elucidate specific serotonergic signaling pathways triggered by 5HTR2A, we performed immunoblots for ERK and CREB. Finally, we compared cell viability and the induction of apoptosis in the presence 5HTR2A agonists and antagonists.Results5HTR2A was overexpressed in the malignant cell line in comparison to normal cells. In CnOb cells, ERK phosphorylation (ERK-P) decreased in response to both serotonin and a specific 5HTR2A antagonist, ritanserin. In contrast, ERK-P abundance increased in COS cells following either treatment. While endogenous CREB was undetectable in CnOb, CREB was observed constitutively in COS, with expression and exhibited increased CREB phosphorylation following escalating concentrations of ritanserin. To determine the influence of 5HTR2A signaling on cell viability we challenged cells with ritanserin and serotonin. Our findings confirmed that serotonin treatment promoted cell viability in malignant cells but not in normal osteoblasts. Conversely, ritanserin reduced cell viability in both the normal and osteosarcoma cells. Further, ritanserin induced apoptosis in COS at the same concentrations associated with decreased cell viability.ConclusionsThese findings confirm the existence of a functional 5HTR2A in a canine osteosarcoma cell line. Results indicate that intracellular second messenger signal coupling of 5HTR2A is different between normal and malignant cells, warranting further research to investigate its potential as a novel therapeutic target for canine osteosarcoma.

Collaboration


Dive into the Patrick E. Chappell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ravid Sasson

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shay Bracha

Oregon State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge