Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrick F. Dillon is active.

Publication


Featured researches published by Patrick F. Dillon.


Journal of Theoretical Biology | 1990

The theory of diazymes and functional coupling of pyruvate kinase and creatine kinase

Patrick F. Dillon; Joseph F. Clark

The physical-chemical principles governing the interactions of enzymes having common metabolic products are presented. Methods for comparing the dissociation rates of the metabolic product and the rates of enzyme-enzyme interaction are given. Using muscle pyruvate kinase (PK) and creatine kinase (CK) as an example, it is shown that the probability of forming an enzyme-product-enzyme complex is much greater than the rate of ATP dissociation from either enzyme. Experimental evidence using 31P-NMR demonstrates that in the presence of both pyruvate kinase and creatine kinase, there is exchange of phosphate between phosphocreatine and phosphoenolpyruvate without a change in the intermediate, ATP. This confirms the formation of a PK.ATP.CK complex in an aqueous solution without enzyme attachment to a substructure. Enzymes capable of forming these mobile clusters are defined as diazymes, and the criteria for their formation are given. The metabolic implications of diazymes are discussed.


Journal of Vascular Research | 1995

Phosphocreatine and Creatine Kinase in Energetic Metabolism of the Porcine Carotid Artery

Joseph F. Clark; Patrick F. Dillon

OBJECTIVES Magnetization exchange experiments and force analysis were performed on porcine carotid arteries with varied phosphocreatine (PCr) levels. The aim of these experiments was to determine the creatine kinase (CK) kinetics and the role in hypoxic relaxation. METHODS The magnetization exchange techniques used were multisite saturation transfer (MST) and conventional saturation transfer (CST). The two techniques were used because CST assumes a two-site exchange while MST allows one to assume a three-site exchange. Mechanical parameters of tension generation and relaxation were measured to determine the energetic effects on contractility of carotid strips. RESULTS Measurements of molecular exchange between ATP and PCr found the pseudo first-order rate constant (kf) of 0.17 +/- 0.04 S-1 (PCr-->ATP) and kr = 0.12 +/- 0.03 S-1 (ATP-->PCr) in unstimulated porcine carotid artery. In the carotids, despite increased PCr and K+ stimulation, no magnetization exchange is observable with MST. This result indicates that the ATPase was less than 0.04 mumol/g/s (below the NMR resolution) while CK was 0.11 mumol/g/s. Creatine-loaded carotids showed no significant differences in force measurements: maximal force, resting tension, and the rate of hypoxia were all unchanged. CONCLUSIONS The flux ratio (flux forward over flux reverse) was 0.94 +/- 0.13 which was considered to be indicative of CK being at equilibrium in the resting porcine carotid artery. The rate of the CK reaction is rapid enough to assume a two-site kinetic exchange not limiting energetic supply during hypoxia-induced relaxation.


Biophysical Journal | 2000

Natural Electrophoresis of Norepinephrine and Ascorbic Acid

Patrick F. Dillon; Robert Root-Bernstein; Patrick R. Sears; L. K. Olson

The electric field produced by cell membranes, extending only a few nanometers, is 1000 times stronger than the electric fields required to produce dissociation of molecular complexes. Using the complex formed by norepinephrine (NE) and ascorbic acid (AA), we have demonstrated the quantitative binding of AA to NE, the use of capillary electrophoresis to measure quantitative binding of nonelectrolyte complexes, the determination of a dissociation constant (Kd) from electric field-dissociation constants (Ke), and a model for natural dissociation of the NE-AA complex due to the electric field generated by a cell membrane. NE-AA dissociation constants show little effect of NE concentration or pH changes. NE-related compounds also bind AA: epinephrine > norepinephrine > tyrosine > histamine > phenylalanine. Serotonin does not bind AA. Phosphorylated AA and glucose also bind NE at 0.05 and 0.08 of the AA binding, respectively. Natural electrophoresis of molecular complexes allows compounds to travel through the body in a protected state and still be available for physiological activity upon reaching a membrane.


American Journal of Physiology-cell Physiology | 1998

Capillary electrophoretic measurement of tissue metabolites.

Patrick F. Dillon; Patrick R. Sears

A method for the measurement of tissue metabolites from rabbit urinary bladder using capillary electrophoresis (CE) has been developed. The method generates a reproducible electropherogram containing >20 peaks, including NAD, NADH, lactate, UDP-glucose, phosphocreatine, creatine, ATP, ADP, GTP, and UTP, from <20 nl of extract solution generated from 1.1 nl (or ∼1.2 μg) of tissue in <40 min. Multiple samples from the same bladder produce SE comparable with enzymatic or nuclear magnetic resonance (NMR) measurements of metabolites: phosphorus-NMR measurement requires 106 more tissue than CE; individual enzymatic measurements using 100 μl/sample require 2,000 μl, a 105 greater volume than required by CE for the same number of metabolites. CE detects about three times more peaks than phosphorus-NMR on a similar time scale. Comparable measurements using enzymatic analysis would require ∼10 times longer. The combination of minimal tissue volume requirements, rapid measurement, and reproducibility makes CE a valuable tool in the investigation of simultaneous changes in multiple metabolites from minute tissue samples.


PLOS ONE | 2010

Receptor-mediated enhancement of beta adrenergic drug activity by ascorbate in vitro and in vivo.

Patrick F. Dillon; Robert Root-Bernstein; N. Edward Robinson; William M. Abraham; Catherine Berney

Rationale Previous in vitro research demonstrated that ascorbate enhances potency and duration of activity of agonists binding to alpha 1 adrenergic and histamine receptors. Objectives Extending this work to beta 2 adrenergic systems in vitro and in vivo. Methods Ultraviolet spectroscopy was used to study ascorbate binding to adrenergic receptor preparations and peptides. Force transduction studies on acetylcholine-contracted trachealis preparations from pigs and guinea pigs measured the effect of ascorbate on relaxation due to submaximal doses of beta adrenergic agonists. The effect of inhaled albuterol with and without ascorbate was tested on horses with heaves and sheep with carbachol-induced bronchoconstriction. Measurements Binding constants for ascorbate binding to beta adrenergic receptor were derived from concentration-dependent spectral shifts. Dose- dependence curves were obtained for the relaxation of pre-contracted trachealis preparations due to beta agonists in the presence and absence of varied ascorbate. Tachyphylaxis and fade were also measured. Dose response curves were determined for the effect of albuterol plus-and-minus ascorbate on airway resistance in horses and sheep. Main Results Ascorbate binds to the beta 2 adrenergic receptor at physiological concentrations. The receptor recycles dehydroascorbate. Physiological and supra-physiological concentrations of ascorbate enhance submaximal epinephrine and isoproterenol relaxation of trachealis, producing a 3–10-fold increase in sensitivity, preventing tachyphylaxis, and reversing fade. In vivo, ascorbate improves albuterols effect on heaves and produces a 10-fold enhancement of albuterol activity in “asthmatic” sheep. Conclusions Ascorbate enhances beta-adrenergic activity via a novel receptor-mediated mechanism; increases potency and duration of beta adrenergic agonists effective in asthma and COPD; prevents tachyphylaxis; and reverses fade. These novel effects are probably caused by a novel mechanism involving phosphorylation of aminergic receptors and have clinical and drug-development applications.


Current Pharmaceutical Design | 2008

Small molecule complementarity as a source of novel pharmaceutical agents and combination therapies

Robert Root-Bernstein; Patrick F. Dillon

Many examples of specific binding between small molecules are known that are associated with modified physiological and pharmacological activities. Conversely, the antagonism or synergism of small molecules is often correlated with specific binding between the molecules. It follows that small molecule binding can be used as a relatively quick, easy, and specific screen for functionally useful drug actions and interactions. These actions and interactions may manifest themselves as functional antagonisms; binding may correlate with enhancement or synergism; the formation of some complexes may yield clues about how drugs may be targeted to specific cell types in vivo and provide leads for the development of antidotes for drug overdoses or poisoning; the binding of one molecule to another may mimic receptor binding; and complexation may provide novel ways of protecting and delivering drugs. Relevant examples from each type of application are reviewed involving peptide-peptide interactions; peptide-aromatic compound interactions; aromatic-aromatic compound interactions; vitamin-aromatic compound interactions; and polycyclic compound interactions. We argue that screening for molecular complementarity of small molecules turns ligands such as neurotransmitters and their metabolites, hormones, and drugs themselves, into direct targets of drug development that can augment screening new compounds for activity against receptors and second messenger systems. We believe that the small molecule complementarity approach is novel, fruitful and under-utilized.


Journal of Vascular Research | 2000

Influence of cellular energy metabolism on contractions of porcine carotid artery smooth muscle.

Patrick F. Dillon

A number of cellular metabolites, including inorganic phosphate and ADP, have been proposed to regulate the contractions of smooth muscle. Hypothesizing that one of these would have a greater influence than the others, parallel experiments using tissue mechanics and 31P-NMR allowed comparison of several metabolic components with the generation of force in porcine carotid artery smooth muscle during long-term contractions. Pi, ADP, ATP, PCr, free energy, pH, and free Mg2+ were determined from phosphate spectra during a control-hypoxia-postcontrol sequence generated during K+ stimulation by replacement of oxygen with nitrogen using either pyruvate or glucose as substrate. Both pH and free Mg2+ were significantly lower in control pyruvate-supplied tissues than in glucose-supplied tissues. Mechanical experiments following the same protocol produced variations in force. The pyruvate series produced the greater range of mechanical and metabolic changes. Linear and logarithmic regression analysis found the order of correlation with force to be highest for Pi, followed by pH, free energy, PCr, ATP, ADP, and free Mg2+. The results are consistent with models for the regulation of myosin ATPase by free phosphate inhibition. The results are inconsistent with models of ADP as a regulator of smooth muscle force. Perturbations which alter intracellular phosphate, such as creatine loading, may produce side effects on the contractions of vascular smooth muscle.


Hypertension | 1998

Augmentation of Aortic Ring Contractions by Angiotensin II Antisense Peptide

Patrick F. Dillon; Robert Root-Bernstein; Daniel D. Holsworth

Previous biochemical experiments have revealed two antisense peptide antagonists to human angiotensin II (Ang II), one encoded in the cDNA in the antiparallel reading, the other in the parallel reading. Neither peptides ability to produce physiological antagonism has been demonstrated previously. Both peptides were tested for their ability to antagonize Ang II-induced contractions on rabbit aorta smooth muscle. Neither peptide had any direct contractile activity. The antiparallel Ang II peptide had physiological antagonism to Ang II contractions at a lower sensitivity than reported in biochemical studies, and its antagonist activity was partially blocked by Ang II antiserum, suggesting that it is not an antipeptide but an Ang II homologue. The parallel Ang II antipeptide also required high concentrations for physiological inhibition. Its contractile inhibition was not affected by Ang II antiserum and diminished the Ang II contraction at high micromolar concentrations, findings consistent with physicochemical data showing that it is an Ang II complement. The concentration of either peptide required to produce an antagonistic physiological effect was too high to predict any pharmacological usefulness. The parallel antipeptide, however, significantly increased the force of muscle contractions at high nanomolar concentrations, thus displaying a unique dual augmentation/antagonist activity. This antipeptide seems to have highly sequence-specific activity because other similar parallel antipeptides had no activity. The parallel antipeptide augmentation mimics the shift in the Ang II dose-response curve produced in hypertension studies of the slow pressor effect of Ang II and may be useful in deducing the currently unknown cause of the slow pressor effect. It may also have some uses in migraine studies.


Frontiers in Endocrinology | 2014

Estradiol binds to insulin and insulin receptor decreasing insulin binding in vitro

Robert Root-Bernstein; Abigail Podufaly; Patrick F. Dillon

Rationale: Insulin (INS) resistance associated with hyperestrogenemias occurs in gestational diabetes mellitus, polycystic ovary syndrome, ovarian hyperstimulation syndrome, estrogen therapies, metabolic syndrome, and obesity. The mechanism by which INS and estrogen interact is unknown. We hypothesize that estrogen binds directly to INS and the insulin receptor (IR) producing INS resistance. Objectives: To determine the binding constants of steroid hormones to INS, the IR, and INS-like peptides derived from the IR; and to investigate the effect of estrogens on the binding of INS to its receptor. Methods: Ultraviolet spectroscopy, capillary electrophoresis, and NMR demonstrated estrogen binding to INS and its receptor. Horse-radish peroxidase-linked INS was used in an ELISA-like procedure to measure the effect of estradiol on binding of INS to its receptor. Measurements: Binding constants for estrogens to INS and the IR were determined by concentration-dependent spectral shifts. The effect of estradiol on INS binding to its receptor was determined by shifts in the INS binding curve. Main Results: Estradiol bound to INS with a Kd of 12 × 10−9 M and to the IR with a Kd of 24 × 10−9 M, while other hormones had significantly less affinity. Twenty-two nanomolars of estradiol shifted the binding curve of INS to its receptor 0.8 log units to the right. Conclusion: Estradiol concentrations in hyperestrogenemic syndromes may interfere with INS binding to its receptor producing significant INS resistance.


Journal of Biological Physics | 1995

Creatine kinase increases the solubility and enzymatic activity of pyruvate kinase by means of diazymatic coupling

Patrick F. Dillon; M. K. Weberling; S. M. Letarte; J. F. Clark; P. R. Sears; R. S. Root-Bernstein

Five separate methods, paper chromatography, ethanol solubility, pH dependence, enzymatic activity, and NMR saturation transfer, were used to study the coupling of pyruvate kinase (PK) and creatine kinase (CK). Each method demonstrated specific coupling of the two proteins. The coupling with CK showed that PK had increased ethanol solubility, enzymatic activity, pH-dependent aqueous solubility, and ability to receive ATP directly from CK even at very high (1.2 M) ionic strength at equilibrium conditions. The robustness of the coupling between two enzymes with highin vivo concentrations indicates the necessity for considering kinetic schemes utilizing high enzyme concentrations, as opposed to the dilute properties of Michaelis — Menten kinetics. The direct transfer of ATP from PK to CK constitutes a net transfer of the glycolytically produced high-energy phosphate onto creatine, maintaining a high ADP and low ATP concentration in the vicinity of the glycolytic complex, conditions suited to maintaining a high glycolytic flux. The demonstration of the physical and functional coupling of two soluble enzymes, termed diazymes, suggests that glycolysis may be regulated by diazymatic coupling and that other cellular processes could be regulated similarly.

Collaboration


Dive into the Patrick F. Dillon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

James P. Barger

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pavel Hamet

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar

Yasuhiro Ono

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge