Patrick Gailly
University of Liège
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Patrick Gailly.
Optical Engineering | 2004
Pierre Alexandre Blanche; Patrick Gailly; Serge Habraken; Philippe Lemaire; Claude Jamar
Volume phase holographic gratings (VPHGs) possess unique properties that make them attractive for numerous applications. After reviewing major VPHG characteristics through theory, we discuss some aspects of the dichromated gelatin recording material and the holo- graphic recording process. The large-scale VPHG research facility set up at the Center Spatial de Liege enables production of VPHGs up to 380 mm in diameter, with fringe frequencies from 315 to 3300 lp/mm. We describe the work that has been undertaken in our laboratory to remove the last limitations inherent in VPHGs.
Proceedings of SPIE, the International Society for Optical Engineering | 1999
Patrick Gailly; Jean-Paul Collette; Luc F.P. Renson; Jean Philippe Tock
Ion beam figuring is a deterministic optical fabrication technique which efficiency has been mainly demonstrated on large optics these last years. One of the disadvantages of ion figuring is the high surface temperature of the workpiece. Temperature aspects have already ben mentioned by some authors but are weakly detailed. Therefore thermal effects on BK7 and Zerodur, mainly surface figure distortions and surface temperature measurements, have been investigated here in more detail.
Proceedings of SPIE | 2004
Pierre Alexandre Blanche; Patrick Gailly; Serge Habraken; Philippe Lemaire; Claude Jamar
To increase the size of the volume phase holographic gratings the Centre Spatial de Liege can produce, mosaic technic has been tested and characterized. This method consists of assembling VPH gratings recorded and processed independently into one larger grating. By this way, the final grating size becomes virtually unlimited and dispersive elements can accommodate the largest telescope beams. The second research line about VPH gratings was the high line frequency domain: ν > 3000 lp/mm. Actually, for these frequencies, diffraction according to TE and TM modes is maximum for different wavelengths. However, it is possible to tune the index modulation to three times what is usually required to use the first diffraction TE peak. In this case, the second TE maximum matches the first TM maximum and unpolarized light is so entirely diffracted. This article also summarizes our prospects in the field of very high index modulation gratings where Δn as high as 0.14 has been reached; cryogenic temperature operation for which we have demonstrated our VPH gratings stand -180°C without any Blaze modification; and wavefront correction by post-polishing to minimize diffracted beam aberrations. With this latter technique, λ/6 wavefront over 10 cm diameter has been obtained in the first trial.
Dental Materials | 2016
Charlotte Grenade; Marie-Claire De Pauw-Gillet; Patrick Gailly; Alain Vanheusden; Amélie Mainjot
OBJECTIVES Polymer-infiltrated-ceramic-network (PICN) materials constitute an innovative class of CAD-CAM materials offering promising perspectives in prosthodontics, but no data are available in the literature regarding their biological properties. The objective of the present study was to evaluate the in vitro biocompatibility of PICNs with human gingival fibroblasts (HGFs) in comparison with materials typically used for implant prostheses and abutments. METHODS HGF attachment, proliferation and spreading on discs made of PICN, grade V titanium (Ti), yttrium zirconia (Zi), lithium disilicate glass-ceramic (eM) and polytetrafluoroethylene (negative control), were evaluated using a specific insert-based culture system (IBS-R). Sample surface properties were characterized by XPS, contact angle measurement, profilometry and SEM. RESULTS Ti and Zi gave the best results regarding HGF viability, morphology, number and coverage increase with time in comparison with the negative control, while PICN and eM gave intermediate results, cell spreading being comparable for PICN, Ti, Zi and eM. Despite the presence of polymers and their related hydrophobicity, PICN exhibited comparable results to glass-ceramic materials, which could be explained by the mode of polymerization of the monomers. SIGNIFICANCE The results of the present study confirm that the currently employed materials, i.e. Ti and Zi, can be considered to be the gold standard of materials in terms of HGF behavior, while PICN gave intermediate results comparable to eM. The impact of the present in vitro results needs to be further investigated clinically, particularly in the view of the utilization of PICNs for prostheses on bone-level implants.
Proceedings of SPIE, the International Society for Optical Engineering | 1999
Jean Philippe Tock; Jean-Paul Collette; Patrick Gailly; Dirk Kampf
An ion beam figuring facility is operational at the Centre Spatial de Liege since 1997. Its present capabilities are described. An extensive characterization program is running in order to determine the optimized parameters for various materials and operating conditions. In this frame, tests have been performed on a spherical gold-coated aluminum mirror plated in between the with nickel. The nickel plating was used to be super-polished to a BRDF of 1 10-4 at 1 deg at 10 micrometers wavelength. Micro-roughness and etching rate measurements were realized and influence of ion bombardment on the coating has been established after removal of the gold coating. The gold coating removal of the gold coating. The gold coating removing was performed by using the ion beam flux. Finally, the mirror has been figure from the original sphere to a parabola. Surface characteristics evolution is also described in terms of micro-roughness and surface error. An overview of the research and development programs related to this facility is given. Results of this technique and potential impact on optics fabrication are then briefly exposed.
Journal of Dental Research | 2018
Maher Eldafrawy; Marie Ebroin; Patrick Gailly; Jean-François Nguyen; Michael Sadoun; Amélie Mainjot
The objective of this study was to evaluate the interfacial fracture toughness (IFT) of composite cement with dispersed filler (DF) versus polymer-infiltrated ceramic network (PICN) computer-aided design and computer-aided manufacturing (CAD-CAM) composite blocks after 2 different surface pretreatments using the notchless triangular prism (NTP) test. Two DFs (Cerasmart [CRT] and Lava Ultimate [LVA]), 2 PICNs (Enamic [ENA] and experimental PICN [EXP]), and e.max CAD lithium disilicate glass-ceramic (EMX, control) prism samples were bonded to their counterparts with Variolink Esthetic DC composite cement after either hydrofluoric acid etching (HF) or gritblasting (GR). Both procedures were followed by silanization. All samples (n = 30 per group) were thermocycled (10,000 cycles) and tested for their IFT in a water bath at 36°C. Moreover, representative samples from each group were subjected to a developed interfacial area ratio (Sdr) measurement by profilometry and scanning electron microscopy (SEM) characterization. EXP-HF gave the highest IFT (1.85 ± 0.39 MPa·m1/2), followed by EMX-HF and ENA-HF, while CRT-HF gave the lowest (0.15 ± 0.22 MPa·m1/2). PICNs gave significantly better results with HF, and DF showed better results with GR. A 2-way analysis of variance indicated that there were significantly higher IFT and Sdr for PICNs than for DF. A positive correlation (r² = 0.872) was found between IFT and Sdr. SEM characterization showed the specific microstructure of the surface of etched PICNs, indicating the presence of a retentive polymer-based honeycomb structure. Etching of the typical double-network microstructure of PICNs causes an important increase in the Sdr and IFT, while DF should be gritblasted. DF exhibited significantly lower Sdr and IFT values than PICNs. The present results show the important influence of the material class and surface texture, and consequently the micromechanical bond, on the adhesive interface performance of CAD-CAM composites.
International Symposium on Optical Science and Technology | 2002
Patrick Gailly; Daniel de Chambure; Jean Paul Collette; Claude Jamar; Robert Laine; Emmanuel Mazy; P. Medart; Yvan Stockman
A new technique to improve the image quality of Ni replicated X-ray mirror is presented. During the manufacturing of XMM Mirror Module between 1994 to 1999, the classical manufacturing process showed its limits. In 1995, the XMM Mirror Module Qualification Model HEW was around 20 arcsec. In 1998, the fifth Flight Model Mirror Module reached 11 arcsec HEW, with a single mirror shell achieving 8 arcsec HEW. The performance of this technology is namely limited by the integration process of the shells. The new technique is based on the following philosophy : Firstly, an accurate measurement of each mirror shell after integration. A dedicated metrology system has been built and allows a precise metrology of the actual surface. Secondly, a modification of the mirror shell and of the support to transfer the stress to a non optical active area. Finally, an ion figuring run to correct the residual shape error of the mirror. The control and evaluation of the process is assured by EUV PSF assessment achieved in the FOCAL X facility developed for XMM. The advantages of this new process are to shape the mirrors in their final hardware configuration and the versality of the process enabling improvement of other kinds of high accuracy mirrors.
Proceedings of SPIE | 2012
Patrick Gailly; Juriy Hastanin; Charles Duterte; Yves Hernandez; Jean-Bernard Lecourt; Axel Kupisiewicz; Paul-Etienne Martin; Karl Fleury-Frenette
We present a thermoreflectance-based metrology concept applied to compound semiconductor thin films off-line characterization in the solar cells scribing process. The presented thermoreflectance setup has been used to evaluate the thermal diffusivity of thin CdTe films and to measure eventual changes in the thermal properties of 5 μm CdTe films ablated by nano and picosecond laser pulses. The temperature response of the CdTe thin film to the nanosecond heating pulse has been numerically investigated using the finite-difference time-domain (FDTD) method. The computational and experimental results have been compared.
Spie Newsroom | 2008
Patrick Gailly
To enhance the capabilities of high-precision optics, the ion beam figuring (IBF) technique has been used for nearly 20 years by a few laboratories and companies over the world. First demonstrated by Wilson et al.1, this type of figuring would later be used on a wider scale to treat various optical materials. The process derives from the creation of local physical etchingsmade through the collision of accelerated ions with target atoms (the so-called sputtering process), and is accomplished through rastering an ion beam with appropriate computed velocities across the workpiece. As a result, a determined profile is etched. Following other mechanical polishing methods, IBF is usually performed as the final step to remove the last long spatial wavelength surface errors (hundreds of nanometers). The main advantages of figuring in this manner are the following: it is a deterministic method (non-iterative and therefore timesaving), it does not require contact when performed (useful for lightweight or ultra-thin substrates), and it allows for figuring exotic shapes. The main constraint is that it requires a vacuum environment for operation. Surface roughening2 and heating3 can also restrict the applicability or performance of the technique. At the Centre Spatial de Liege (CSL), we have been using and developing the IBF technique for more than a decade in order to correct small to medium optics (ranging from 25 to 200 mm in diameter). The facility includes a 1.5 m3 vacuum chamber located in a 10,000-grade clean room.4 The five axes driving the ion source and the substrate mount are software controlled in such a way that the ion beam always scans the workpiece at normal incidence, constant distance, and appropriate velocity. In addition, equipment has been upscaled for a local company to treat optics up to 1-meter diameter. More recently, our ion beam system has also been used to texture surfaces in a deterministic way. Efficient IBF correction of optics requires a beam removal function (the etching profile of the ion beam in the material Figure 1. Typical etching profiles measured on chemical vapor deposited (CVD) silicon carbide for two different ion sources (Kaufman and end-Hall). For the Kaufman ion source, three different profiles are given: unmasked and masked beam with 11 mm and 4 mm aperture (mask 1 and 2, respectively).
International Conference on Space Optics — ICSO 2004 | 2017
Patrick Gailly
Optical and structural elements made of silicon carbide are increasingly found in space instruments. Chemical vapor deposited silicon carbide (CVD-SiC) is used as a reflective coating on SiC optics in reason of its good behavior under polishing. The advantage of applying ion beam figuring (IBF) to CVD-SiC over other surface figure-improving techniques is discussed herein. The results of an IBF sequence performed at the Centre Spatial de Liège on a 100 mm CVD-SiC mirror are reported. The process allowed to reduce the mirror surface errors from 243 nm to 13 nm rms . Beside the surface figure, roughness is another critical feature to consider in order to preserve the optical quality of CVD-SiC . Thus, experiments focusing on the evolution of roughness were performed in various ion beam etching conditions. The roughness of samples etched at different depths down to 3 ≠m was determined with an optical profilometer. These measurements emphasize the importance of selecting the right combination of gas and beam energy to keep roughness at a low level. Kaufman-type ion sources are generally used to perform IBF but the performance of an end-Hall ion source in figuring CVD-SiC mirrors was also evaluated in this study. In order to do so, ion beam etching profiles obtained with the end-Hall source on CVD-SiC were measured and used as a basis for IBF simulations.