Patrick Gruber
University of Surrey
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Patrick Gruber.
IEEE Transactions on Vehicular Technology | 2014
Leonardo De Novellis; Aldo Sorniotti; Patrick Gruber
The continuous and precise modulation of the driving and braking torques of each wheel is considered the ultimate goal for controlling the performance of a vehicle in steady-state and transient conditions. To do so, dedicated torque-vectoring (TV) controllers that allow optimal wheel torque distribution under all possible driving conditions have to be developed. Commonly, vehicle TV controllers are based on a hierarchical approach, consisting of a high-level supervisory controller that evaluates a corrective yaw moment and a low-level controller that defines the individual wheel torque reference values. The problem of the optimal individual wheel torque distribution for a particular driving condition can be solved through an optimization-based control-allocation (CA) algorithm, which must rely on the appropriate selection of the objective function. With a newly developed offline optimization procedure, this paper assesses the performance of alternative objective functions for the optimal wheel torque distribution of a four-wheel-drive (4WD) fully electric vehicle. Results show that objective functions based on the minimum tire slip criterion provide better control performance than functions based on energy efficiency.
IEEE Transactions on Vehicular Technology | 2014
Leonardo De Novellis; Aldo Sorniotti; Patrick Gruber; Andrew Pennycott
Fully electric vehicles (FEVs) with individually controlled powertrains can significantly enhance vehicle response to steering-wheel inputs in both steady-state and transient conditions, thereby improving vehicle handling and, thus, active safety and the fun-to-drive element. This paper presents a comparison between different torque-vectoring control structures for the yaw moment control of FEVs. Two second-order sliding-mode controllers are evaluated against a feedforward controller combined with either a conventional or an adaptive proportional-integral-derivative (PID) controller. Furthermore, the potential performance and robustness benefits arising from the integration of a body sideslip controller with the yaw rate feedback control system are assessed. The results show that all the evaluated controllers are able to significantly change the understeer behavior with respect to the baseline vehicle. The PID-based controllers achieve very good vehicle performance in steady-state and transient conditions, whereas the controllers based on the sliding-mode approach demonstrate a high level of robustness against variations in the vehicle parameters. The integrated sideslip controller effectively maintains the sideslip angle within acceptable limits in the case of an erroneous estimation of the tire-road friction coefficient.
IEEE Transactions on Vehicular Technology | 2015
Tommaso Goggia; Aldo Sorniotti; Leonardo De Novellis; Antonella Ferrara; Patrick Gruber; Johan Theunissen; Dirk Steenbeke; Bernhard Knauder; Josef Zehetner
This paper presents an integral sliding mode (ISM) formulation for the torque-vectoring (TV) control of a fully electric vehicle. The performance of the controller is evaluated in steady-state and transient conditions, including the analysis of the controller performance degradation due to its real-world implementation. This potential issue, which is typical of sliding mode formulations, relates to the actuation delays caused by the drivetrain hardware configuration, signal discretization, and vehicle communication buses, which can provoke chattering and irregular control action. The controller is experimentally assessed on a prototype electric vehicle demonstrator under the worst-case conditions in terms of drivetrain layout and communication delays. The results show a significant enhancement of the controlled vehicle performance during all maneuvers.
SAE International Journal of Passenger Cars - Electronic and Electrical Systems | 2013
Leonardo De Novellis; Aldo Sorniotti; Patrick Gruber
Vehicle handling in steady-state and transient conditions can be significantly enhanced with the continuous modulation of the driving and braking torques of each wheel via dedicated torque-vectoring controllers. For fully electric vehicles with multiple electric motor drives, the enhancements can be achieved through a control allocation algorithm for the determination of the wheel torque distribution. This article analyzes alternative cost functions developed for the allocation of the wheel torques for a four-wheel-driven fully electric vehicle with individually controlled motors. Results in terms of wheel torque and tire slip distributions among the four wheels, and of input power to the electric drivetrains as functions of lateral acceleration are presented and discussed in detail. The cost functions based on minimizing tire slip allow better control performance than the functions based on energy efficiency for the case-study vehicle.
Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering | 2014
Andrew Pennycott; Leonardo De Novellis; Alessio Sabbatini; Patrick Gruber; Aldo Sorniotti
Individually controlled electric motors provide opportunities for enhancing the handling characteristics and the energy efficiency of fully electric vehicles. Online power loss minimisation schemes based on the electric motor efficiency data may, however, be impractical for real-time implementation owing to the heavy computational demand. In this paper, the optimal wheel torque distribution for minimal power losses from the electric motor drives is evaluated in an offline optimisation procedure and then approximated using a simple function for online control allocation. The wheel torque allocation scheme is evaluated via a simulation approach incorporating straight-ahead driving at a constant speed, a ramp manoeuvre and a sequence of step steer manoeuvres. The energy-efficient wheel torque allocation scheme provides motor power loss reductions and yields savings in the total power utilisation compared with a simpler method in which the torques are evenly distributed across the four wheels. The method does not rely on complex online optimisation and can be applied on real electric vehicles in order to improve the efficiency and thus to reduce power consumption during different manoeuvres.
IEEE Transactions on Industrial Electronics | 2016
Arash M. Dizqah; Basilio Lenzo; Aldo Sorniotti; Patrick Gruber; Saber Fallah; Jasper De Smet
Electric vehicles (EVs) with four individually controlled drivetrains are over-actuated systems, and therefore, the total wheel torque and yaw moment demands can be realized through an infinite number of feasible wheel torque combinations. Hence, an energy-efficient torque distribution among the four drivetrains is crucial for reducing the drivetrain power losses and extending driving range. In this paper, the optimal torque distribution is formulated as the solution of a parametric optimization problem, depending on the vehicle speed. An analytical solution is provided for the case of equal drivetrains, under the experimentally confirmed hypothesis that the drivetrain power losses are strictly monotonically increasing with the torque demand. The easily implementable and computationally fast wheel torque distribution algorithm is validated by simulations and experiments on an EV demonstrator, along driving cycles and cornering maneuvers. The results show considerable energy savings compared to alternative torque distribution strategies.
Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering | 2014
Leonardo De Novellis; Aldo Sorniotti; Patrick Gruber
In contrast with conventional vehicles driven by an internal-combustion engine, the number of motors in fully electric cars is not fixed. A variety of architectural solutions, including from one to four individually controlled electric drive units, is possible and opens up new avenues in the design of vehicle characteristics. In particular, individual control of multiple electric powertrains promises to enhance the handling performance in steady-state and dynamic conditions. For the analysis and selection of the best electric powertrain layout based on the expected vehicle characteristics and performance, new analytical tools and metrics are required. This article presents and demonstrates a novel offline procedure for the design of the feedforward control action of the vehicle dynamics controller of a fully electric vehicle and three performance indicators for the objective comparison of the handling potential of alternative electric powertrain layouts. The results demonstrate that the proposed offline routine allows the desired understeer characteristics to be achieved with any of the investigated vehicle configurations, in traction and braking conditions. With respect to linear handling characteristics, the simulations indicate that the influence of torque-vectoring is independent of the location of the controlled axles (front or rear) and is considerably affected by the number of controlled axles.
SAE International Journal of Passenger Cars - Electronic and Electrical Systems | 2014
Andrew Pennycott; Leonardo De Novellis; Aldo Sorniotti; Patrick Gruber
The combination of continuously-acting high level controllers and control allocation techniques allows various driving modes to be made available to the driver. The driving modes modify the fundamental vehicle performance characteristics including the understeer characteristic and also enable varying emphasis to be placed on aspects such as tire slip and energy efficiency. In this study, control and wheel torque allocation techniques are used to produce three driving modes. Using simulation of an empirically validated model that incorporates the dynamics of the electric powertrains, the vehicle performance, longitudinal slip and power utilization during straight-ahead driving and cornering maneuvers under the different driving modes are compared. The three driving modes enable significant changes to the vehicle behavior to be induced, allowing the responsiveness of the car to the steering wheel inputs and the lateral acceleration limits to be varied according to the selected driving mode. Furthermore, the different driving modes have a significant impact on the longitudinal tire slip, the motor power losses and the total power utilization. The control and wheel torque allocation methods do not rely on complex and computationally demanding online optimization schemes and can thus be practically implemented on real fully electric vehicles. Copyright
Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering | 2008
Patrick Gruber; R. S. Sharp; A.D. Crocombe
Abstract Investigation of the stationary load—deflection behaviour of tyres reveals many details of the structure and the rubber-to-road friction properties. These characteristics are fundamental to the understanding of the behaviour of both the stationary and the rolling tyre. In connection with racing, tyre static stiffness characteristics are of interest as they reflect on the controllability of the vehicle to which they are fitted. In this paper, the construction of a finite element (FE) model capable of predicting the static tyre behaviour in great detail is presented. The model is validated against extensive experimental data, including contact pressure distributions and load—deflection characteristics. Static loading tests, which involve variations in the friction rules coupling tread rubber with the ground surface, and in wheel camber angle, are simulated with the tyre model. The results of the simulations reveal that a friction coefficient of 0.5 is sufficient to prevent sliding in static loading tests for this particular tyre. Lower levels of friction lead to tread sliding and reduced vertical tyre stiffness. Sliding is primarily lateral, leading to narrowing of the contact patch of the tyre. Narrowing also increases the local sidewall curvature, which is part of the softening mechanism for both upright and cambered tyres.
IEEE Transactions on Industry Applications | 2017
Stefano De Pinto; Pablo Camocardi; Aldo Sorniotti; Patrick Gruber; Pietro Perlo; Fabio Viotto
This paper presents a novel four-wheel-drive electric vehicle layout consisting of one on-board electric drivetrain per axle. Each drivetrain includes a simplified clutch-less two-speed transmission system and an open differential to transmit the torque to the wheels. This drivetrain layout allows eight different gear state combinations at the vehicle level, thus increasing the possibility of running the vehicle in a more energy-efficient state for the specific wheel torque demand and speed. To compensate for the torque gap during gearshifts, a “torque-fill” controller was developed that varies the motor torque on the axle not involved in the gearshift. Experimental tests show the effectiveness of the developed gearshift strategy extended with the torque-fill capability. Energy efficiency benefits are discussed by comparing the energy consumptions of the case study vehicle controlled through a constant front-to-total wheel torque distribution and conventional gearshift maps, and the same vehicle with an energy management system based on an offline optimization. Results demonstrate that the more advanced controller brings a significant reduction of the energy consumption at constant speed and along different driving cycles.