Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrick H. Corran is active.

Publication


Featured researches published by Patrick H. Corran.


Nature Genetics | 2009

Genome-wide and fine-resolution association analysis of malaria in West Africa.

Muminatou Jallow; Yik-Ying Teo; Kerrin S. Small; Kirk A. Rockett; Panos Deloukas; Taane G. Clark; Katja Kivinen; Kalifa Bojang; David J. Conway; Margaret Pinder; Giorgio Sirugo; Fatou Sisay-Joof; Stanley Usen; Sarah Auburn; Suzannah Bumpstead; Susana Campino; Alison J. Coffey; Andrew Dunham; Andrew E. Fry; Angela Green; Rhian Gwilliam; Sarah Hunt; Michael Inouye; Anna Jeffreys; Alieu Mendy; Aarno Palotie; Simon Potter; Jiannis Ragoussis; Jane Rogers; Kate Rowlands

We report a genome-wide association (GWA) study of severe malaria in The Gambia. The initial GWA scan included 2,500 children genotyped on the Affymetrix 500K GeneChip, and a replication study included 3,400 children. We used this to examine the performance of GWA methods in Africa. We found considerable population stratification, and also that signals of association at known malaria resistance loci were greatly attenuated owing to weak linkage disequilibrium (LD). To investigate possible solutions to the problem of low LD, we focused on the HbS locus, sequencing this region of the genome in 62 Gambian individuals and then using these data to conduct multipoint imputation in the GWA samples. This increased the signal of association, from P = 4 × 10−7 to P = 4 × 10−14, with the peak of the signal located precisely at the HbS causal variant. Our findings provide proof of principle that fine-resolution multipoint imputation, based on population-specific sequencing data, can substantially boost authentic GWA signals and enable fine mapping of causal variants in African populations.


PLOS Pathogens | 2010

Long-Lived Antibody and B Cell Memory Responses to the Human Malaria Parasites, Plasmodium falciparum and Plasmodium vivax

Jiraprapa Wipasa; Chaisuree Suphavilai; Lucy C. Okell; Jackie Cook; Patrick H. Corran; Kanitta Thaikla; Witaya Liewsaree; Eleanor M. Riley; Julius C. R. Hafalla

Antibodies constitute a critical component of the naturally acquired immunity that develops following frequent exposure to malaria. However, specific antibody titres have been reported to decline rapidly in the absence of reinfection, supporting the widely perceived notion that malaria infections fail to induce durable immunological memory responses. Currently, direct evidence for the presence or absence of immune memory to malaria is limited. In this study, we analysed the longevity of both antibody and B cell memory responses to malaria antigens among individuals who were living in an area of extremely low malaria transmission in northern Thailand, and who were known either to be malaria naïve or to have had a documented clinical attack of P. falciparum and/or P. vivax in the past 6 years. We found that exposure to malaria results in the generation of relatively avid antigen-specific antibodies and the establishment of populations of antigen-specific memory B cells in a significant proportion of malaria-exposed individuals. Both antibody and memory B cell responses to malaria antigens were stably maintained over time in the absence of reinfection. In a number of cases where antigen-specific antibodies were not detected in plasma, stable frequencies of antigen-specific memory B cells were nonetheless observed, suggesting that circulating memory B cells may be maintained independently of long-lived plasma cells. We conclude that infrequent malaria infections are capable of inducing long-lived antibody and memory B cell responses.


Malaria Journal | 2008

Dried blood spots as a source of anti-malarial antibodies for epidemiological studies

Patrick H. Corran; Jackie Cook; Caroline A. Lynch; Heleen Leendertse; Alphaxard Manjurano; Jamie T. Griffin; Jonathan Cox; Tarekegn A. Abeku; Teun Bousema; Azra C. Ghani; Chris Drakeley; Eleanor M. Riley

BackgroundBlood spots collected onto filter paper are an established and convenient source of antibodies for serological diagnosis and epidemiological surveys. Although recommendations for the storage and analysis of small molecule analytes in blood spots exist, there are no published systematic studies of the stability of antibodies under different storage conditions.MethodsBlood spots, on filter paper or glass fibre mats and containing malaria-endemic plasma, were desiccated and stored at various temperatures for different times. Eluates of these spots were assayed for antibodies against two Plasmodium falciparum antigens, MSP-119 and MSP2, and calculated titres used to fit an exponential (first order kinetic) decay model. The first order rate constants (k) for each spot storage temperature were used to fit an Arrhenius equation, in order to estimate the thermal and temporal stability of antibodies in dried blood spots. The utility of blood spots for serological assays was confirmed by comparing antibodies eluted from blood spots with the equivalent plasma values in a series of samples from North Eastern Tanzania and by using blood spot-derived antibodies to estimate malaria transmission intensity in this site and for two localities in Uganda.ResultsAntibodies in spots on filter paper and glass fibre paper had similar stabilities but blood was more easily absorbed onto filter papers than glass fibre, spots were more regular and spot size was more closely correlated with blood volume for filter paper spots. Desiccated spots could be stored at or below 4°C for extended periods, but were stable for only very limited periods at ambient temperature. When desiccated, recoveries of antibodies that are predominantly of IgG1 or IgG3 subclasses were similar. Recoveries of antibodies from paired samples of serum and of blood spots from Tanzania which had been suitably stored showed similar recoveries of antibodies, but spots which had been stored for extended periods at ambient humidity and temperature showed severe loss of recoveries. Estimates of malaria transmission intensity obtained from serum and from blood spots were similar, and values obtained using blood spots agreed well with entomologically determined values.ConclusionThis study has demonstrated the suitability of filter paper blood spots paper for collection of serum antibodies, and provided clear guidelines for the treatment and storage of filter papers which emphasize the importance of desiccation and minimisation of time spent at ambient temperatures. A recommended protocol for collecting, storing and assaying blood spots is provided.


PLOS ONE | 2009

Rapid Assessment of Malaria Transmission Using Age-Specific Sero-Conversion Rates

Laveta Stewart; Roly Gosling; Jamie T. Griffin; Samwel Gesase; Joseph J. Campo; Ramadan Hashim; Paul M Masika; Jacklin F Mosha; Teun Bousema; Seif Shekalaghe; Jackie Cook; Patrick H. Corran; Azra C. Ghani; Eleanor M. Riley; Chris Drakeley

Background Malaria transmission intensity is a crucial determinant of malarial disease burden and its measurement can help to define health priorities. Rapid, local estimates of transmission are required to focus resources better but current entomological and parasitological methods for estimating transmission intensity are limited in this respect. An alternative is determination of antimalarial antibody age-specific sero-prevalence to estimate sero-conversion rates (SCR), which have been shown to correlate with transmission intensity. This study evaluated SCR generated from samples collected from health facility attendees as a tool for a rapid assessment of malaria transmission intensity. Methodology and Principal Findings The study was conducted in north east Tanzania. Antibodies to Plasmodium falciparum merozoite antigens MSP-119 and AMA-1 were measured by indirect ELISA. Age-specific antibody prevalence was analysed using a catalytic conversion model based on maximum likelihood to generate SCR. A pilot study, conducted near Moshi, found SCRs for AMA-1 were highly comparable between samples collected from individuals in a conventional cross-sectional survey and those collected from attendees at a local health facility. For the main study, 3885 individuals attending village health facilities in Korogwe and Same districts were recruited. Both malaria parasite prevalence and sero-positivity were higher in Korogwe than in Same. MSP-119 and AMA-1 SCR rates for Korogwe villages ranged from 0.03 to 0.06 and 0.07 to 0.21 respectively. In Same district there was evidence of a recent reduction in transmission, with SCR among those born since 1998 [MSP-119 0.002 to 0.008 and AMA-1 0.005 to 0.014 ] being 5 to 10 fold lower than among individuals born prior to 1998 [MSP-119 0.02 to 0.04 and AMA-1 0.04 to 0.13]. Current health facility specific estimates of SCR showed good correlations with malaria incidence rates in infants in a contemporaneous clinical trial (MSP-119 r2 = 0.78, p<0.01 & AMA-1 r2 = 0.91, p<0.001). Conclusions SCRs generated from age-specific anti-malarial antibody prevalence data collected via health facility surveys were robust and credible. Analysis of SCR allowed detection of a recent drop in malaria transmission in line with recent data from other areas in the region. This health facility-based approach represents a potential tool for rapid assessment of recent trends in malaria transmission intensity, generating valuable data for local and national malaria control programs to target, monitor and evaluate their control strategies.


Infection and Immunity | 2006

Target Antigen, Age, and Duration of Antigen Exposure Independently Regulate Immunoglobulin G Subclass Switching in Malaria

J. E. Tongren; Chris Drakeley; S. L. R. McDonald; H. G. Reyburn; Alphaxard Manjurano; Watoky Mmm Nkya; Martha M. Lemnge; C. D. Gowda; Jim Todd; Patrick H. Corran; Eleanor M. Riley

ABSTRACT The isotype/subclass of immunoglobulin determines antibody function, but rather little is known about factors that direct class switching in vivo. To evaluate factors that might influence the maturation of the antibody response during infection, we conducted a seroepidemiological study of the immunoglobulin G (IgG) subclass response to four merozoite-associated antigens of Plasmodium falciparum in a mountainous region of northeastern Tanzania, where malaria endemicity declines with increasing altitudes. We found that IgG1/IgG3 class switching is independently affected by the nature of the antigen, cumulative exposure to the antigen, and the maturity of the immune system (i.e., the age of the individual). These observations provide insights into the effects of immune system maturity, the duration and intensity of antigen exposure, and inherent characteristics of individual antigens on the process of class switching in human B cells. Our data also throw light on the consequences of class switch decisions on the gradual acquisition of antimalarial immunity.


Infection and Immunity | 2004

Fine Specificity of Serum Antibodies to Plasmodium falciparum Merozoite Surface Protein, PfMSP-1 19 , Predicts Protection from Malaria Infection and High-Density Parasitemia†

Brenda Okech; Patrick H. Corran; Jim Todd; Amy Joynson-Hicks; Chairat Uthaipibull; Thomas G. Egwang; Anthony A. Holder; Eleanor M. Riley

ABSTRACT Antibodies to the C terminus of the Plasmodium falciparum merozoite surface protein, PfMSP-119, may inhibit merozoite invasion or block the effects of inhibitory antibodies. Here, using a competition enzyme-linked immunosorbent assay and antibody binding to wild-type and mutated recombinant proteins, we show that there are marked variations between individuals in the fine specificity of naturally acquired anti-MSP-119 antibodies. Furthermore, although neither the prevalence nor the concentration of total anti-MSP-119 antibodies was associated with resistance to malaria in African children, significant associations were observed between antibody fine specificity and subsequent risk of infection and high-density parasitemia during a follow-up period. Thus, the fine specificity of naturally acquired human anti-MSP-119 antibodies is crucial in determining their function. Future field studies, including the evaluation of PfMSP-1 vaccine trials, should include assays that explore antibody fine specificity as well as titer.


PLOS ONE | 2011

Serological Markers Suggest Heterogeneity of Effectiveness of Malaria Control Interventions on Bioko Island, Equatorial Guinea

Jackie Cook; Immo Kleinschmidt; Christopher Schwabe; Gloria Nseng; Teun Bousema; Patrick H. Corran; Eleanor M. Riley; Chris Drakeley

Background In order to control and eliminate malaria, areas of on-going transmission need to be identified and targeted for malaria control interventions. Immediately following intense interventions, malaria transmission can become more heterogeneous if interventions are more successful in some areas than others. Bioko Island, Equatorial Guinea, has been subject to comprehensive malaria control interventions since 2004. This has resulted in substantial reductions in the parasite burden, although this drop has not been uniform across the island. Methods/Principal Findings In 2008, filter paper blood samples were collected from 7387 people in a cross-sectional study incorporating 18 sentinel sites across Bioko, Equatorial Guinea. Antibodies were measured to P. falciparum Apical Membrane Antigen-1 (AMA-1) by Enzyme Linked Immunosorbent Assay (ELISA). Age-specific seropositivity rates were used to estimate seroconversion rates (SCR). Analysis indicated there had been at least a 60% decline in SCR in four out of five regions on the island. Changes in SCR showed a high degree of congruence with changes in parasite rate (PR) and with regional reductions in all cause child mortality. The mean age adjusted concentration of anti-AMA-1 antibodies was mapped to identify areas where individual antibody responses were higher than expected. This approach confirmed the North West of the island as a major focus of continuing infection and an area where control interventions need to be concentrated or re-evaluated. Conclusion/Interpretation Both SCR and PR revealed heterogeneity in malaria transmission and demonstrated the variable effectiveness of malaria control measures. This work confirms the utility of serological analysis as an adjunct measure for monitoring transmission. Age-specific seroprevalence based evidence of changes in transmission over time will be of particular value when no baseline data are available. Importantly, SCR data provide additional evidence to link malaria control activities to contemporaneous reductions in all-cause child mortality.


Infection and Immunity | 2004

The Fine Specificity, but Not the Invasion Inhibitory Activity, of 19-Kilodalton Merozoite Surface Protein 1-Specific Antibodies Is Associated with Resistance to Malarial Parasitemia in a Cross-Sectional Survey in The Gambia

Patrick H. Corran; Rebecca A. O'Donnell; Jim Todd; Chairat Uthaipibull; Anthony A. Holder; Brendan S. Crabb; Eleanor M. Riley

ABSTRACT In a cross-sectional survey of 187 Gambian children and adults, we have analyzed prevalence, fine specificity, and 19-kilodalton merozoite surface protein 1 (MSP-119)-specific erythrocyte invasion inhibitory activity of antibodies to MSP-119 but find no significant association between any of these parameters and prevalence or density of malarial parasitemia, except that, after correcting for total anti-MSP-119 antibody levels, individuals with anti-MSP-119 antibodies that compete with an invasion inhibitory monoclonal antibody (12.10) were significantly less likely to have malaria infections with densities of ≥1,000 parasites/μl than were individuals without such antibodies. This association persisted after correction for age and ethnic origin.


Journal of Experimental Medicine | 2003

Activation of Transforming Growth Factor β by Malaria Parasite-derived Metalloproteinases and a Thrombospondin-like Molecule

Fakhreldin M. Omer; J. Brian de Souza; Patrick H. Corran; Ali A. Sultan; Eleanor M. Riley

Much of the pathology of malaria is mediated by inflammatory cytokines (such as interleukin 12, interferon γ, and tumor necrosis factor α), which are part of the immune response that kills the parasite. The antiinflammatory cytokine transforming growth factor (TGF)-β plays a crucial role in preventing the severe pathology of malaria in mice and TGF-β production is associated with reduced risk of clinical malaria in humans. Here we show that serum-free preparations of Plasmodium falciparum, Plasmodium yoelii 17XL, and Plasmodium berghei schizont-infected erythrocytes, but not equivalent preparations of uninfected erythrocytes, are directly able to activate latent TGF-β (LatTGF-β) in vitro. Antibodies to thrombospondin (TSP) and to a P. falciparum TSP-related adhesive protein (PfTRAP), and synthetic peptides from PfTRAP and P. berghei TRAP that represent homologues of TGF-β binding motifs of TSP, all inhibit malaria-mediated TGF-β activation. Importantly, TRAP-deficient P. berghei parasites are less able to activate LatTGF-β than wild-type parasites and their replication is attenuated in vitro. We show that activation of TGF-β by malaria parasites is a two step process involving TSP-like molecules and metalloproteinase activity. Activation of LatTGF-β represents a novel mechanism for direct modulation of the host response by malaria parasites.


Carbohydrate Research | 1980

Analysis of underivatised d-gluco-oligosaccharides (d.p. 2–20) by high-pressure liquid chromatography

Charles A. White; Patrick H. Corran; John F. Kennedy

Abstract The behaviour of oligosaccharides in high-pressure liquid chromatography (h.p.l.c.) has been investigated by using silica columns dynamically modified with different di- or poly-amines. Oligosaccharides having d.p. of up to 20 (from partially hydrolysed starch) are well-resolved, without derivatisation, in under 40 min by using a simple isocratic system. The results agreed well with those obtained by automated gel-permeation chromatography.

Collaboration


Dive into the Patrick H. Corran's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Teun Bousema

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge