Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrick J. Bolan is active.

Publication


Featured researches published by Patrick J. Bolan.


Magnetic Resonance in Medicine | 2003

In vivo quantification of choline compounds in the breast with 1H MR spectroscopy.

Patrick J. Bolan; Sina Meisamy; Eva H. Baker; Joseph Lin; Tim H. Emory; Michael T. Nelson; Lenore I. Everson; Douglas Yee; Michael Garwood

This work describes a methodology for quantifying levels of total choline‐containing compounds (tCho) in the breast using in vivo 1H MR spectroscopy (MRS) at high field (4 Tesla). Water is used as an internal reference compound to account for the partial volume of adipose tissue. Peak amplitudes are estimated by fitting one peak at a time over a narrow frequency band to allow measurement of small metabolite resonances in spectra with large lipid peaks. This quantitative method significantly improves previously reported analysis methods by accounting for the variable sensitivity of breast 1H MRS measurements. Using this technique, we detected and quantified a tCho peak in 214 of 500 in vivo spectra. tCho levels were found to be significantly higher in malignancies than in benign abnormalities and normal breast tissues, which suggests that this technique could be used to diagnose suspicious lesions and monitor response to cancer treatments. Magn Reson Med 50:1134–1143, 2003.


Radiology | 2014

Clinical Proton MR Spectroscopy in Central Nervous System Disorders

Gülin Öz; Jeffry R. Alger; Peter B. Barker; Robert Bartha; Alberto Bizzi; Chris Boesch; Patrick J. Bolan; Kevin M. Brindle; Cristina Cudalbu; Alp Dinçer; Ulrike Dydak; Uzay E. Emir; Jens Frahm; R.G. González; Stephan Gruber; Rolf Gruetter; Rakesh K. Gupta; Arend Heerschap; A Henning; Hoby P. Hetherington; Franklyn A. Howe; Petra Susan Hüppi; Ralph E. Hurd; Kejal Kantarci; Dennis W.J. Klomp; Roland Kreis; Marijn J. Kruiskamp; Martin O. Leach; Alexander Lin; Peter R. Luijten

A large body of published work shows that proton (hydrogen 1 [(1)H]) magnetic resonance (MR) spectroscopy has evolved from a research tool into a clinical neuroimaging modality. Herein, the authors present a summary of brain disorders in which MR spectroscopy has an impact on patient management, together with a critical consideration of common data acquisition and processing procedures. The article documents the impact of (1)H MR spectroscopy in the clinical evaluation of disorders of the central nervous system. The clinical usefulness of (1)H MR spectroscopy has been established for brain neoplasms, neonatal and pediatric disorders (hypoxia-ischemia, inherited metabolic diseases, and traumatic brain injury), demyelinating disorders, and infectious brain lesions. The growing list of disorders for which (1)H MR spectroscopy may contribute to patient management extends to neurodegenerative diseases, epilepsy, and stroke. To facilitate expanded clinical acceptance and standardization of MR spectroscopy methodology, guidelines are provided for data acquisition and analysis, quality assessment, and interpretation. Finally, the authors offer recommendations to expedite the use of robust MR spectroscopy methodology in the clinical setting, including incorporation of technical advances on clinical units.


Magnetic Resonance in Medicine | 2009

Whole-body imaging at 7T: Preliminary results

J. Thomas Vaughan; Carl J. Snyder; Lance DelaBarre; Patrick J. Bolan; Jinfeng Tian; Lizann Bolinger; Gregor Adriany; Peter Andersen; John Strupp; Kamil Ugurbil

The objective of this study was to investigate the feasibility of whole‐body imaging at 7T. To achieve this objective, new technology and methods were developed. Radio frequency (RF) field distribution and specific absorption rate (SAR) were first explored through numerical modeling. A body coil was then designed and built. Multichannel transmit and receive coils were also developed and implemented. With this new technology in hand, an imaging survey of the “landscape” of the human body at 7T was conducted. Cardiac imaging at 7T appeared to be possible. The potential for breast imaging and spectroscopy was demonstrated. Preliminary results of the first human body imaging at 7T suggest both promise and directions for further development. Magn Reson Med 61:244–248, 2009.


Magnetic Resonance in Medicine | 2009

Whole-body imaging at 7T

John Thomas Vaughan; Carl J. Snyder; Lance DelaBarre; Patrick J. Bolan; Jinfeng Tian; Lizann Bolinger; Gregor Adriany; Peter Andersen; John Strupp; Kamil Ugurbil

The objective of this study was to investigate the feasibility of whole‐body imaging at 7T. To achieve this objective, new technology and methods were developed. Radio frequency (RF) field distribution and specific absorption rate (SAR) were first explored through numerical modeling. A body coil was then designed and built. Multichannel transmit and receive coils were also developed and implemented. With this new technology in hand, an imaging survey of the “landscape” of the human body at 7T was conducted. Cardiac imaging at 7T appeared to be possible. The potential for breast imaging and spectroscopy was demonstrated. Preliminary results of the first human body imaging at 7T suggest both promise and directions for further development. Magn Reson Med 61:244–248, 2009.


Magnetic Resonance in Medicine | 2002

Eliminating spurious lipid sidebands in 1H MRS of breast lesions.

Patrick J. Bolan; Lance DelaBarre; Eva H. Baker; Hellmut Merkle; Lenore I. Everson; Douglas Yee; Michael Garwood

Detecting metabolites in breast lesions by in vivo 1H MR spectroscopy can be difficult due to the abundance of mobile lipids in the breast which can produce spurious sidebands that interfere with the metabolite signals. Two‐dimensional J‐resolved spectroscopy has been demonstrated in the brain as a means to eliminate these artifacts from a large water signal; coherent sidebands are resolved at their natural frequencies, leaving the noncoupled metabolite resonances in the zero‐frequency trace of the 2D spectrum. This work demonstrates that using the zero‐frequency trace—or equivalently the average of spectra acquired with different echo times—can be used to separate noncoupled metabolite signals from the lipid‐induced sidebands. This technique is demonstrated with simulations, phantom studies, and in several breast lesions. Compared to the conventional approach using a single echo time, echo time averaging provides increased sensitivity for the study of small and irregularly shaped lesions. Magn Reson Med 48:215–222, 2002.


Breast Cancer Research | 2005

Imaging in breast cancer: Magnetic resonance spectroscopy

Patrick J. Bolan; Michael T. Nelson; Douglas Yee; Michael Garwood

A technique called in vivo magnetic resonance spectroscopy (MRS) can be performed along with magnetic resonance imaging (MRI) to obtain information about the chemical content of breast lesions. This information can be used for several clinical applications, such as monitoring the response to cancer therapies and improving the accuracy of lesion diagnosis. Initial MRS studies of breast cancer show promising results, and a growing number of research groups are incorporating the technique into their breast MRI protocols. This article introduces 1H-MRS of the breast, reviews the literature, discusses current methods and technical issues, and describes applications for treatment monitoring and lesion diagnosis.


Magnetic Resonance in Medicine | 2004

Measurement and correction of respiration-induced B0 variations in breast 1H MRS at 4 Tesla†

Patrick J. Bolan; Pierre Gilles Henry; Eva H. Baker; Sina Meisamy; Michael Garwood

Respiratory motion is well known to cause artifacts in magnetic resonance spectroscopy (MRS). In MRS of the breast, the dominant artifact is not due to motion of the breast itself, but rather it is produced by B0 field distortions associated with respiratory motion of tissues in the chest and abdomen. This susceptibility artifact has been reported to occur in the brain, but it is more apparent in the breast due to the anatomic proximity of the lungs. In the breast, these B0 distortions cause shot‐to‐shot frequency shifts, which vary an average of 24 Hz during a typical 1H MRS scan at 4 T. This variation can be corrected retrospectively by frequency shifting individual spectra prior to averaging. If not corrected, these shifts reduce spectral resolution and increase peak fitting errors. This work demonstrates the artifact, describes a method for correcting it, and evaluates its impact on quantitative spectroscopy. When the artifact is not corrected, quantification errors increase by an average of 28%, which dramatically impacts the ability to measure metabolite resonances at low signal‐to‐noise ratios. Magn Reson Med 52:1239–1245, 2004.


Breast Cancer Research | 2012

In vivo proton magnetic resonance spectroscopy of breast cancer: a review of the literature

Jonathan K.P. Begley; Thomas W. Redpath; Patrick J. Bolan; Fiona J. Gilbert

An emerging clinical modality called proton magnetic resonance spectroscopy (1H-MRS) enables the non-invasive in vivo assessment of tissue metabolism and is demonstrating applications in improving the specificity of MR breast lesion diagnosis and monitoring tumour responsiveness to neoadjuvant chemotherapies. Variations in the concentration of choline-based cellular metabolites, detectable with 1H-MRS, have shown an association with malignant transformation of tissue in in vivo and in vitro studies. 1H-MRS exists as an adjunct to the current routine clinical breast MR examination. This review serves as an introduction to the field of breast 1H-MRS, discusses modern high-field strength and quantitative approaches and technical considerations, and reviews the literature with respect to the application of 1H-MRS for breast cancer.


NeuroImage | 2006

In vivo micro-MRI of intracortical neurovasculature

Patrick J. Bolan; Essa Yacoub; Michael Garwood; Kamil Ugurbil; Noam Harel

This work describes a methodology for in vivo MR imaging of arteries and veins within the visual cortex of the cat brain. Very high magnetic fields (9.4 T) and small field-of-view 3D acquisitions were used to image the neurovasculature at resolutions approaching the microscopic scale. A combination of time-of-flight MR angiography and T*(2)-weighted imaging, using both endogenous BOLD contrast and an exogenous iron-oxide contrast agent, provided high specificity for distinguishing between arteries and veins within the cortex. These acquisition techniques, combined with 3D image processing and display methods, were used to detect and visualize intracortical arteries and veins with diameters smaller than 100 microm. This methodology can be used for visualizing the neurovasculature or building models of the vascular network and may benefit a variety of research applications including fMRI, cerebrovascular disease and cancer angiogenesis.


Magnetic Resonance Imaging Clinics of North America | 2013

Magnetic Resonance Spectroscopy of the Breast: Current Status

Patrick J. Bolan

In vivo magnetic resonance spectroscopy (MRS) of the breast can be used to measure the level of choline-containing compounds, which is a biomarker of malignancy. In the diagnostic setting, MRS can provide high specificity for distinguishing benign from malignant lesions. MRS also can be used as an early response indicator in patients undergoing neoadjuvant chemotherapy. This article describes the acquisition and analysis methods used for measuring total choline levels in the breast using MRS, reviews the findings from clinical studies of diagnosis and treatment response, and discusses problems, limitations, and future developments for this promising clinical technology.

Collaboration


Dive into the Patrick J. Bolan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Douglas Yee

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sina Meisamy

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

Tim H. Emory

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

Eva H. Baker

University of Minnesota

View shared research outputs
Researchain Logo
Decentralizing Knowledge