Patrick J. Kavanagh
University of Tübingen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Patrick J. Kavanagh.
Astronomy and Astrophysics | 2016
Pierre Maggi; F. Haberl; Patrick J. Kavanagh; Manami Sasaki; L. M. Bozzetto; Miroslav Filipovic; G. Vasilopoulos; W. Pietsch; Sean D. Points; You-Hua Chu; John R. Dickel; M. Ehle; R. M. Williams; J. Greiner
We present a comprehensive X-ray study of the population of supernova remnants (SNRs) in the LMC. Using primarily XMM-Newton, we conduct a systematic spectral analysis of LMC SNRs to gain new insights on their evolution and the interplay with their host galaxy. We combined all the archival XMM observations of the LMC with those of our Very Large Programme survey. We produced X-ray images and spectra of 51 SNRs, out of a list of 59. Using a careful modelling of the background, we consistently analysed all the X-ray spectra and measure temperatures, luminosities, and chemical compositions. We investigated the spatial distribution of SNRs in the LMC and the connection with their environment, characterised by various SFHs. We tentatively typed all LMC SNRs to constrain the ratio of core-collapse to type Ia SN rates in the LMC. We compared the X-ray-derived column densities to HI maps to probe the three-dimensional structure of the LMC. This work provides the first homogeneous catalogue of X-ray spectral properties of LMC SNRs. It offers a complete census of LMC SNRs exhibiting Fe K lines (13% of the sample), or revealing contribution from hot SN ejecta (39%). Abundances in the LMC ISM are found to be 0.2-0.5 solar, with a lower [
Astronomy and Astrophysics | 2014
Pierre Maggi; F. Haberl; Patrick J. Kavanagh; Sean D. Points; John R. Dickel; L. M. Bozzetto; Manami Sasaki; You-Hua Chu; Robert A. Gruendl; Miroslav Filipovic; W. Pietsch
\alpha
The Astrophysical Journal | 2012
Emma Whelan; T. P. Ray; Fernando Comeron; Francesca Bacciotti; Patrick J. Kavanagh
/Fe] than in the Milky Way. The ratio of CC/type Ia SN in the LMC is
Astronomy and Astrophysics | 2012
Patrick J. Kavanagh; Manami Sasaki; Sean D. Points
N_{\mathrm{CC}}/N_{\mathrm{Ia}} = 1.35(_{-0.24}^{+0.11})
Monthly Notices of the Royal Astronomical Society | 2014
L. M. Bozzetto; Patrick J. Kavanagh; Pierre Maggi; Miroslav Filipovic; Milorad Stupar; Quentin A. Parker; Manami Sasaki; F. Haberl; D. Urošević; John R. Dickel; R. Sturm; Robert J Williams; M. Ehle; Robert A. Gruendl; You-Hua Chu; Sean D. Points; Evan J Crawford
, lower than in local SN surveys and galaxy clusters. Comparison of X-ray luminosity functions of SNRs in Local Group galaxies reveals an intriguing excess of bright objects in the LMC. We confirm that 30 Doradus and the LMC Bar are offset from the main disc of the LMC, to the far and near sides, respectively. (abridged)
Astronomy and Astrophysics | 2015
Patrick J. Kavanagh; Manami Sasaki; L. M. Bozzetto; Miroslav Filipovic; Sean D. Points; Pierre Maggi; F. Haberl
Aims: We present a detailed multi-wavelength study of four new supernova remnants (SNRs) in the Large Magellanic Cloud (LMC). The objects were identified as SNR candidates in X-ray observations performed during the survey of the LMC with XMM-Newton. Methods: Data obained with XMM-Newton are used to investigate the morphological and spectral features of the remnants in X-rays. We measure the plasma conditions, look for supernova (SN) ejecta emission, and constrain some of the SNR properties (e.g. age and ambient density). We supplement the X-ray data with optical, infrared, and radio-continuum archival observations, which allow us to understand the conditions resulting in the current appearance of the remnants. Based on the spatially-resolved star formation history (SFH) of the LMC together with the X-ray spectra, we attempt to type the supernovae that created the remnants. Results: We confirm all four objects as SNRs, to which we assign the names MCSNR J0508-6830, MCSNR J0511-6759, MCSNR J0514-6840, and MCSNR J0517-6759. In the first two remnants, an X-ray bright plasma is surrounded by very faint [S II] emission. The emission from the central plasma is dominated by Fe L-shell lines, and the derived iron abundance is greatly in excess of solar. This establishes their type Ia (i.e. thermonuclear) SN origin. They appear to be more evolved versions of other Magellanic Cloud iron-rich SNRs which are centrally-peaked in X-rays. From the two other remnants (MCSNR J0514-6840 and MCSNR J0517-6759), we do not see ejecta emission. At all wavelengths at which they are detected, the local environment plays a key role in their observational appearance. We present evidence that MCSNR J0517-6759 is close to and interacting with a molecular cloud, suggesting a massive progenitor.
Monthly Notices of the Royal Astronomical Society | 2016
V. Doroshenko; G. Pühlhofer; Patrick J. Kavanagh; A. Santangelo; V. Suleimanov; D. Klochkov
Studies of brown dwarf (BD) outflows provide information pertinent to questions on BD formation, as well as allowing outflow mechanisms to be investigated at the lowest masses. Here new observations of the bipolar outflow from the 24 M JUP BD 2MASS J12073347–3932540 are presented. The outflow was originally identified through the spectro-astrometric analysis of the [O I]λ6300 emission line. Follow-up observations consisting of spectra and [S II], R-band and I-band images were obtained. The new spectra confirm the original results and are used to constrain the outflow position angle (P.A.) at ~65°. The [O I]λ6300 emission line region is spatially resolved and the outflow is detected in the [S II] images. The detection is firstly in the form of an elongation of the point-spread function (PSF) along the direction of the outflow P.A. Four faint knot-like features (labeled A-D) are also observed to the southwest of 2MASS J12073347–3932540 along the same P.A. suggested by the spectra and the elongation in the PSF. Interestingly, D, the feature furthest from the source, is bow shaped with the apex pointing away from 2MASS J12073347–3932540. A color-color analysis allows us to conclude that at least feature D is part of the outflow under investigation while A is likely a star or galaxy. Follow-up observations are needed to confirm the origin of B and C. This is a first for a BD, as BD optical outflows have to date only been detected using spectro-astrometry. This result also demonstrates for the first time that BD outflows can be collimated and episodic.
Astronomy and Astrophysics | 2015
Patrick J. Kavanagh; Manami Sasaki; Emma Whelan; Pierre Maggi; F. Haberl; L. M. Bozzetto; Miroslav Filipovic; Evan J Crawford
We perform an analysis of the X-ray superbubble in the N 206 HII region in the Large Magellanic Cloud using current generation facilities to gain a better understanding of the physical processes at work in the superbubble and to improve our knowledge of superbubble evolution. We used XMM-Newton observations of the N 206 region to produce images and extract spectra of the superbubble diffuse emission. Morphological comparisons with Halpha images from the Magellanic Cloud Emission Line Survey were performed, and spectral analysis of the diffuse X-ray emission was carried out. We derived the physical properties of the hot gas in the superbubble based on the results of the spectral analysis. We also determined the total energy stored in the superbubble and compared this to the expected energy input from the stellar population to assess the superbubble growth rate discrepancy for N 206. We find that the brightest region of diffuse X-ray emission is confined by a Halpha shell, consistent with the superbubble model. In addition, faint emission extending beyond the Halpha shell was found, which we attribute to a blowout region. The spectral analysis of both emission regions points to a hot shocked gas as the likely origin of the emission. We determine the total energy stored in the bubble and the expected energy input by the stellar population. However, due to limited data on the stellar population, the input energy is poorly constrained and, consequently, no definitive indication of a growth rate discrepancy is seen. Using the high-sensitivity X-ray data from XMM-Newton and optical data from the Magellanic Cloud Emission Line Survey has allowed us to better understand the physical properties of the N 206 superbubble and address some key questions of superbubble evolution.
Astronomy and Astrophysics | 2014
Gabriele Warth; Manami Sasaki; Patrick J. Kavanagh; Miroslav Filipovic; Sean D. Points; L. M. Bozzetto
We present a detailed radio, X-ray and optical study of a newly discovered Large Mag- ellanic Cloud (LMC) supernova remnant (SNR) which we denote MCSNR J0508-6902. Observations from the Australian Telescope Compact Array (ATCA) and the XMM- Newton X-ray observatory are complemented by deep Himages and Anglo Aus- tralian Telescope AAOmega spectroscopic data to study the SNR shell and its shock- ionisation. Archival data at other wavelengths are also examined. The remnant follows a filled-in shell type morphology in the radio-continuum and has a size of ∼74 pc × 57 pc at the LMC distance. The X-ray emission exhibits a faint soft shell morphology with Fe-rich gas in its interior - indicative of a Type Ia origin. The remnant appears to be mostly dissipated at higher radio-continuum frequencies leaving only the south- eastern limb fully detectable while in the optical it is the western side of the SNR shell that is clearly detected. The best-fit temperature to the shell X-ray emission (kT = 0.41 +0.05 0.06 keV) is consistent with other large LMC SNRs. We determined an O/Fe ratio of < 21 and an Fe mass of 0.5-1.8 M⊙ in the interior of the remnant, both of which are consistent with the Type Ia scenario. We find an equipartition magnetic field for the remnant of ∼28 µG, a value typical of older SNRs and consistent with other analyses which also infer an older remnant.
Astronomy and Astrophysics | 2015
Patrick J. Kavanagh; Manami Sasaki; L. M. Bozzetto; Sean D. Points; Miroslav Filipovic; Pierre Maggi; F. Haberl; Evan J Crawford
Aims. We present a detailed study of the superbubble 30 Dor C and the newly identified MCSNR J0536−6913 in the Large Magellanic Cloud. Methods. All available XMM-Newton data (flare-filtered exposure times of 420 ks EPIC-pn, 556 ks EPIC-MOS1, 614 ks EPICMOS2) were used to characterise the thermal X-ray emission in the region. An analysis of the non-thermal X-ray emission is also presented and discussed in the context of emission mechanisms previously suggested in the literature. These data are supplemented by X-ray data from Chandra, optical data from the Magellanic Cloud Emission Line Survey, and radio data from the Australia Telescope Compact Array and the Molonglo Observatory Synthesis Telescope. Results. The brightest thermal emission towards 30 Dor C was found to be associated with a new supernova remnant, MCSNR J0536−6913. X-ray spectral analysis of MCSNR J0536−6913 suggested an ejecta-dominated remnant with lines of O, Ne, Mg, and Si, and a total 0.3 − 10 keV X-ray luminosity of ∼ 8 × 1034 erg s−1. Based on derived ejecta abundance ratios, we determined the mass of the stellar progenitor to be either ∼ 18 M or as high as & 40 M , though the spectral fits were subject to simplifying assumptions (e.g., uniform temperature and well-mixed ejecta). The thermal emission from the superbubble exhibited enrichment by α-process elements, evidence for a recent core-collapse SNR interaction with the superbubble shell. We detected nonthermal X-ray emission throughout 30 Dor C, with the brightest regions being highly correlated with the Hα and radio shells. We created a non-thermal spectral energy distribution for the north-eastern shell of 30 Dor C which was best-fit with an exponentially cut-off synchrotron model. Conclusions. Thermal X-ray emission from 30 Dor C is very complex, consisting of a large scale superbubble emission at the eastern shell wall with the brightest emission due to MCSNR J0536−6913. The fact that the non-thermal spectral energy distribution of the superbubble shell was observed to roll-off is further evidence that the non-thermal X-ray emission from 30 Dor C is synchrotron in origin.