Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrick J. McCarthy is active.

Publication


Featured researches published by Patrick J. McCarthy.


Nature | 2005

The afterglow of GRB 050709 and the nature of the short-hard gamma-ray bursts.

Derek B. Fox; Dale A. Frail; Paul A. Price; S. R. Kulkarni; Edo Berger; Tsvi Piran; Alicia M. Soderberg; S. B. Cenko; P. B. Cameron; Avishay Gal-Yam; Mansi M. Kasliwal; D.-S. Moon; Fiona A. Harrison; Ehud Nakar; Brian Paul Schmidt; Bryan E. Penprase; Roger A. Chevalier; Pawan Kumar; Kathy Roth; D. Watson; Brian Leverett Lee; Stephen A. Shectman; Mark M. Phillips; M. Roth; Patrick J. McCarthy; M Rauch; L. L. Cowie; Bruce A. Peterson; Joshua Rich; Nobuyuki Kawai

The final chapter in the long-standing mystery of the γ-ray bursts (GRBs) centres on the origin of the short-hard class of bursts, which are suspected on theoretical grounds to result from the coalescence of neutron-star or black-hole binary systems. Numerous searches for the afterglows of short-hard bursts have been made, galvanized by the revolution in our understanding of long-duration GRBs that followed the discovery in 1997 of their broadband (X-ray, optical and radio) afterglow emission. Here we present the discovery of the X-ray afterglow of a short-hard burst, GRB 050709, whose accurate position allows us to associate it unambiguously with a star-forming galaxy at redshift z = 0.160, and whose optical lightcurve definitively excludes a supernova association. Together with results from three other recent short-hard bursts, this suggests that short-hard bursts release much less energy than the long-duration GRBs. Models requiring young stellar populations, such as magnetars and collapsars, are ruled out, while coalescing degenerate binaries remain the most promising progenitor candidates.


Nature | 2003

An asymptotic-giant-branch star in the progenitor system of a type Ia supernova

Mario Hamuy; Mark M. Phillips; Nicholas B. Suntzeff; Jose Manuel Campillos Maza; L. E. Gonzalez; M. Roth; Kevin Krisciunas; Nidia I. Morrell; Elizabeth M. Green; S. E. Persson; Patrick J. McCarthy

Stars that explode as supernovae come in two main classes. A type Ia supernova is recognized by the absence of hydrogen and the presence of elements such as silicon and sulphur in its spectrum; this class of supernova is thought to produce the majority of iron-peak elements in the Universe. They are also used as precise ‘standard candles’ to measure the distances to galaxies. While there is general agreement that a type Ia supernova is produced by an exploding white dwarf star, no progenitor system has ever been directly observed. Significant effort has gone into searching for circumstellar material to help discriminate between the possible kinds of progenitor systems, but no such material has hitherto been found associated with a type Ia supernova. Here we report the presence of strong hydrogen emission associated with the type Ia supernova SN2002ic, indicating the presence of large amounts of circumstellar material. We infer from this that the progenitor system contained a massive asymptotic-giant-branch star that lost several solar masses of hydrogen-rich gas before the supernova explosion.


The Astrophysical Journal | 2009

RED NUGGETS AT z ∼ 1.5: COMPACT PASSIVE GALAXIES AND THE FORMATION OF THE KORMENDY RELATION

Ivana Damjanov; Patrick J. McCarthy; Roberto G. Abraham; Karl Glazebrook; Haojing Yan; Erin Mentuch; Damien Le Borgne; Sandra Savaglio; David Crampton; Richard Murowinski; S. Juneau; R. G. Carlberg; Inger Jorgensen; Kathy Roth; Hsiao-Wen Chen; Ronald O. Marzke

We present the results of Near-Infrared Camera and Multi-Object Spectrometer (NICMOS) imaging of a sample of 19 high-mass passively evolving galaxies with 1.2 < z < 2, taken primarily from the Gemini Deep Deep Survey (GDDS). Around 80% of galaxies in our GDDS sample have spectra dominated by stars with ages 1 Gyr. Our rest-frame R-band images show that most of these objects have compact regular morphologies which follow the classical R 1/4 law. These galaxies scatter along a tight sequence in the size versus surface brightness parameter space which defines the Kormendy relation. Around one-third (3/10) of the massive red objects in the GDDS sample are extraordinarily compact, with effective radii under 1 kpc. Our NICMOS observations allow the detection of such systems more robustly than is possible with optical (rest-frame UV) data, and while similar systems have been seen at z 2, this is the first time such systems have been detected in a rest-frame optical survey at 1.2 < z < 2. We refer to these compact galaxies as red nuggets, and note that similarly compact massive galaxies are completely absent in the nearby universe. We introduce a new stellar mass Kormendy relation (stellar mass density versus size) which we use to single out the effects of size evolution from those of luminosity and color evolution in stellar populations. The 1 < z < 2 passive galaxies have mass densities that are an order of magnitude larger then early-type galaxies today and are comparable to the compact distant red galaxies at 2 < z < 3. We briefly consider mechanisms for size evolution in contemporary models focusing on equal-mass mergers and adiabatic expansion driven by stellar mass loss. Neither of these mechanisms appears to be able to transform the high-redshift Kormendy relation into its local counterpart, leaving the origin and fate of these compact red nuggets unresolved.


The Astrophysical Journal | 2014

Galaxy stellar mass functions from ZFOURGE/CANDELS: an excess of low-mass galaxies since z=2 and the rapid buildup of quiescent galaxies

Adam R. Tomczak; Ryan F. Quadri; Kim-Vy H. Tran; Ivo Labbé; Caroline M. S. Straatman; Casey Papovich; Karl Glazebrook; Rebecca J. Allen; Gabriel B. Brammer; Glenn G. Kacprzak; Lalitwadee Kawinwanichakij; Daniel D. Kelson; Patrick J. McCarthy; Nicola Mehrtens; Andrew J. Monson; S. Eric Persson; Lee R. Spitler; Vithal Tilvi; Pieter G. van Dokkum

Using observations from the FourStar Galaxy Evolution Survey (ZFOURGE), we obtain the deepest measurements to date of the galaxy stellar mass function (SMF) at 0.2 < z < 3. ZFOURGE provides well-constrained photometric redshifts made possible through deep medium-bandwidth imaging at 1-2 μm. We combine this with Hubble Space Telescope imaging from the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey, allowing for the efficient selection of both blue and red galaxies down to stellar masses of ~109.5 M ☉ at z ~ 2.5. The total surveyed area is 316 arcmin2 distributed over three independent fields. We supplement these data with the wider and shallower NEWFIRM Medium-Band Survey to provide stronger constraints at high masses. Several studies at z ≤ 1.5 have revealed a steepening of the slope at the low-mass end of the SMF, leading to an upturn at masses <1010 M ☉ that is not well described by a standard single-Schechter function. We find evidence that this feature extends to at least z ~ 2 and that it can be found in both the star-forming and quiescent populations individually. The characteristic mass (M*) and slope at the lowest masses (α) of a double-Schechter function fit to the SMF stay roughly constant at Log(M/M ☉) ~ 10.65 and ~ – 1.5, respectively. The SMF of star-forming galaxies has evolved primarily in normalization, while the change in shape is relatively minor. Our data allow us, for the first time, to observe a rapid buildup at the low-mass end of the quiescent SMF. Since z = 2.5, the total stellar mass density of quiescent galaxies (down to 109 M ☉) has increased by a factor of ~12, whereas the mass density of star-forming galaxies only increases by a factor of ~2.2.


The Astrophysical Journal | 1999

Optical and Radio Observations of the Afterglow from GRB 990510: Evidence for a Jet

Fiona A. Harrison; J. S. Bloom; Dale A. Frail; Re'em Sari; S. R. Kulkarni; S. G. Djorgovski; Tim Axelrod; Jeremy R. Mould; Brian Paul Schmidt; M. H. Wieringa; R. M. Wark; R. Subrahmanyan; D. McConnell; Patrick J. McCarthy; Bradley E. Schaefer; Richard G. McMahon; R. O. Markze; E. Firth; Paolo Soffitta; L. Amati

We present multicolor optical and two-frequency radio observations of the bright BeppoSAX event GRB 990510. Neither the well-sampled optical decay nor the radio observations are consistent with simple spherical afterglow models. The achromatic steepening in the optical band and the early decay of the radio afterglow, which both occur at t ~ 1 day, are evidence for hydrodynamical evolution of the source and can be most easily interpreted by models in which the gamma-ray burst ejecta are collimated in a jet. Employing a simple jet model to explain the observations, we derive a jet opening angle of θ_0 = 0.08(n/1 cm^(-3))^(1/8), reducing the isotropic gamma-ray energy release of 2.9 × 10^(53) ergs by a factor of ~300.


The Astrophysical Journal | 2011

VERY STRONG EMISSION-LINE GALAXIES IN THE WFC3 INFRARED SPECTROSCOPIC PARALLEL SURVEY AND IMPLICATIONS FOR HIGH-REDSHIFT GALAXIES* , **

Hakim Atek; Brian D. Siana; Claudia Scarlata; M. Malkan; Patrick J. McCarthy; Harry I. Teplitz; Alaina Henry; James W. Colbert; C. Bridge; A. J. Bunker; A. Dressler; Robert A. E. Fosbury; Nimish P. Hathi; Crystal L. Martin; Nathaniel R. Ross; Hyunjin Shim

The WFC3 Infrared Spectroscopic Parallel Survey uses the Hubble Space Telescope (HST) infrared grism capabilities to obtain slitless spectra of thousands of galaxies over a wide redshift range including the peak of star formation history of the universe. We select a population of very strong emission-line galaxies with rest-frame equivalent widths (EWs) higher than 200 A. A total of 176 objects are found over the redshift range 0.35 < z < 2.3 in the 180 arcmin^2 area that we have analyzed so far. This population consists of young and low-mass starbursts with high specific star formation rates (sSFR). After spectroscopic follow-up of one of these galaxies with Keck/Low Resolution Imaging Spectrometer, we report the detection at z = 0.7 of an extremely metal-poor galaxy with 12 + log(O/H) =7.47 ± 0.11. After estimating the active galactic nucleus fraction in the sample, we show that the high-EW galaxies have higher sSFR than normal star-forming galaxies at any redshift. We find that the nebular emission lines can substantially affect the total broadband flux density with a median brightening of 0.3 mag, with some examples of line contamination producing brightening of up to 1 mag. We show that the presence of strong emission lines in low-z galaxies can mimic the color-selection criteria used in the z ~ 8 dropout surveys. In order to effectively remove low-redshift interlopers, deep optical imaging is needed, at least 1 mag deeper than the bands in which the objects are detected. Without deep optical data, most of the interlopers cannot be ruled out in the wide shallow HST imaging surveys. Finally, we empirically demonstrate that strong nebular lines can lead to an overestimation of the mass and the age of galaxies derived from fitting of their spectral energy distribution (SED). Without removing emission lines, the age and the stellar mass estimates are overestimated by a factor of 2 on average and up to a factor of 10 for the high-EW galaxies. Therefore, the contribution of emission lines should be systematically taken into account in SED fitting of star-forming galaxies at all redshifts.


The Astrophysical Journal | 2004

Evolved Galaxies at z > 1.5 from the Gemini Deep Deep Survey: The Formation Epoch of Massive Stellar Systems

Patrick J. McCarthy; Damien Le Borgne; David Crampton; Hsiao-Wen Chen; Roberto G. Abraham; Karl Glazebrook; Sandra Savaglio; Raymond G. Carlberg; Ronald O. Marzke; Kathy Roth; Inger Jorgensen; Isobel M. Hook; Richard Murowinski; S. Juneau

We present spectroscopic evidence from the Gemini Deep Deep Survey for a significant population of color-selected red galaxies at 1.3 1.5 old galaxies have a sky density greater than 0.1 arcmin-2. Conservative age estimates for 20 galaxies with z > 1.3, z = 1.49, give a median age of 1.2 Gyr and zf = 2.4. One-quarter of the galaxies have inferred zf > 4. Models restricted to [Fe/H] ? 0 give median ages and zf of 2.3 Gyr and 3.3, respectively. These galaxies are among the most massive and contribute ~50% of the stellar mass density at 1 < z < 2. The derived ages and most probable star formation histories suggest a high star formation rate (~300-500 M? yr-1) phase in the progenitor population. We argue that most of the red galaxies are not descendants of the typical z ~ 3 Lyman break galaxies. Galaxies associated with luminous submillimeter sources have the requisite star formation rates to be the progenitor population. Our results point toward early and rapid formation for a significant fraction of present-day massive galaxies.


The Astrophysical Journal | 2002

The Most Distant Structure of Galaxies Known: A Protocluster at z = 4.1

B. P. Venemans; J. D. Kurk; George K. Miley; H. J. A. Röttgering; W. van Breugel; C. L. Carilli; C. De Breuck; Holland C. Ford; Timothy M. Heckman; Patrick J. McCarthy; L. Pentericci

Imaging and spectroscopy with the Very Large Telescope have revealed 20 Ly? emitters within a projected distance of 1.3 Mpc and 600 km s-1 of the luminous radio galaxy TN J1338-1942 at z = 4.1. Compared to the field density of Ly? emitters, this implies an overdensity on the order of 15. The structure has a projected size of at least 2.7 ? 1.8 Mpc and a velocity dispersion of 325 km s-1, which makes it the most distant structure known. Using the galaxy overdensity and assuming a bias parameter b = 3-5, the mass is estimated to be ~1015 M?. The radio galaxy itself is surrounded by an uniquely asymmetric Ly? halo. Taken together with our previous data on PKS 1138-262 at z ~ 2.16, these results suggest that luminous radio sources are excellent tracers of high-density regions in the early universe, which evolve into present-day clusters. The statistics of bright radio sources and of concentrations in the Lyman break galaxy population are consistent with the picture that each of those concentrations harbors an active or passive luminous radio source.


The Astrophysical Journal | 1999

The Hα Luminosity Function and Global Star Formation Rate from Redshifts of 1-2

Lin Yan; Patrick J. McCarthy; Wolfram Freudling; Harry I. Teplitz; Eliot M. Malumuth; Ray J. Weymann; Matthew A. Malkan

We present a luminosity function for Hα emission from galaxies at redshifts between 0.7 and 1.9 based on slitless spectroscopy with the near-infrared camera and multiobject spectrometer on the Hubble Space Telescope. The luminosity function is well fit by a Schechter function over the range 6 × 1041 < L (Hα) < 2 × 1043 ergs s-1 with L* = 7 × 1042 ergs s-1 and φ* = 1.7 × 10-3 Mpc-3 for H0 = 50 km s-1 Mpc-1 and q0 = 0.5. We derive a volume-averaged star formation rate at z = 1.3 ± 0.5 of 0.13 M⊙ yr-1 Mpc-3 without correction for extinction. The star formation rate that we derive at ∼6500 A is a factor of 3 higher than that deduced from 2800 A continua. If this difference is caused entirely by reddening, the extinction correction at 2800 A is quite significant. The precise magnitude of the total extinction correction at rest-frame UV wavelengths (e.g., 2800 and 1500 A) is sensitive to the relative spatial distribution of the stars, gas, and dust, as well as to the extinction law. In the extreme case of a homogeneous foreground dust screen and a Milky Way or LMC extinction law, we derive a total extinction at 2800 A of 2.1 mag, or a factor of 7 correction to the UV luminosity density. If we use the Calzetti reddening curve, which was derived for the model in which stars, gas, and dust are well mixed and nebular gas suffers more extinction than stars, our estimate of A2800 is increased by more than 1 mag.


Astrophysical Journal Supplement Series | 1996

HST Snapshot Survey of 3CR Radio Source Counterparts. I. Intermediate Redshifts

Sigrid de Koff; Stefi A. Baum; W. B. Sparks; John A. Biretta; Daniel Golombek; F. Macchetto; Patrick J. McCarthy; George K. Miley

We have obtained images of 267 3CR radio galaxies and quasars by conducting a snapshot survey with HSTs WFPC2 through a broadband red (F702W) filter. This is the first in a series of papers resulting from this survey, describing and presenting the basic data. Here we focus on the 77 radio galaxies within the redshift range 0.1 < z < 0.5 (91% of the total number of 3CR radio galaxies within this redshift range). The images show that on the 01 scale of the HST observations there is a wide variety of structure in radio galaxy morphology. At least 30% of the galaxies show dust, either well-defined dust lanes or chaotically distributed throughout the galaxy. We find disturbed morphologies, such as multiple nuclei and tails of emission, that could indicate merging systems. There is an obvious optical synchrotron jet in 3C 346, and another eight jet candidates are present.

Collaboration


Dive into the Patrick J. McCarthy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Harry I. Teplitz

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nimish P. Hathi

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar

Randy A. Kimble

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Ronald O. Marzke

San Francisco State University

View shared research outputs
Top Co-Authors

Avatar

Bruce Balick

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James W. Colbert

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Jay A. Frogel

Association of Universities for Research in Astronomy

View shared research outputs
Researchain Logo
Decentralizing Knowledge