Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrick J. McGinn is active.

Publication


Featured researches published by Patrick J. McGinn.


Photosynthesis Research | 2011

Integration of microalgae cultivation with industrial waste remediation for biofuel and bioenergy production: opportunities and limitations

Patrick J. McGinn; Kathryn E. Dickinson; Shabana Bhatti; Jean-Claude Frigon; Serge R. Guiot; Stephen J. B. O’Leary

There is currently a renewed interest in developing microalgae as a source of renewable energy and fuel. Microalgae hold great potential as a source of biomass for the production of energy and fungible liquid transportation fuels. However, the technologies required for large-scale cultivation, processing, and conversion of microalgal biomass to energy products are underdeveloped. Microalgae offer several advantages over traditional ‘first-generation’ biofuels crops like corn: these include superior biomass productivity, the ability to grow on poor-quality land unsuitable for agriculture, and the potential for sustainable growth by extracting macro- and micronutrients from wastewater and industrial flue-stack emissions. Integrating microalgal cultivation with municipal wastewater treatment and industrial CO2 emissions from coal-fired power plants is a potential strategy to produce large quantities of biomass, and represents an opportunity to develop, test, and optimize the necessary technologies to make microalgal biofuels more cost-effective and efficient. However, many constraints on the eventual deployment of this technology must be taken into consideration and mitigating strategies developed before large scale microalgal cultivation can become a reality. As a strategy for CO2 biomitigation from industrial point source emitters, microalgal cultivation can be limited by the availability of land, light, and other nutrients like N and P. Effective removal of N and P from municipal wastewater is limited by the processing capacity of available microalgal cultivation systems. Strategies to mitigate against the constraints are discussed.


Plant Physiology | 2003

Inorganic Carbon Limitation and Light Control the Expression of Transcripts Related to the CO2-Concentrating Mechanism in the Cyanobacterium Synechocystis sp. Strain PCC6803

Patrick J. McGinn; G. Dean Price; Ryszard Maleszka; Murray R. Badger

The cyanobacterium Synechocystis sp. strain PCC6803 possesses three modes of inorganic carbon (Ci) uptake that are inducible under Ci stress and that dramatically enhance the efficiency of the CO2-concentrating mechanism (CCM). The effects of Ci limitation on the mRNA transcript abundance of these inducible uptake systems and on the physiological expression of the CCM were investigated in detail in this cyanobacterium. Transcript abundance was assessed with semiquantitative and real-time reverse transcriptase-polymerase chain reaction techniques. Cells aerated with CO2-free air for 30 min in the light, but not in the dark, depleted the total [Ci] to near zero levels. Under these conditions, the full physiological expression of the CCM was apparent within 2 h. Transcripts for the three inducible Ci uptake systems,ndhF3, sbtA, and cmpA, showed near-maximal abundance at 15 min under Ci limitation. The transcriptional regulators, cmpR andndhR, were more moderately expressed, whereas therbcLXS and ccmK-N operons andndhF4/ndhD4/chpX and ccaAgenes were insensitive to the low-Ci treatment. The combined requirement of low Ci and light for the expression of several CCM-related transcripts was examined using real-time reverse transcriptase-polymerase chain reaction. CmpA,ndhF3, and sbtA were strongly expressed in the light, but not in the dark, under low-Ci conditions. We could find no evidence for induction of these or other CCM-related genes by a high-light treatment under high-CO2 conditions. This provided evidence that high-light stress alone could not trigger the expression of CCM-related transcripts in Synechocystissp. PCC6803. Potential signals triggering induction of the high-affinity state of the CCM are discussed.


Bioresource Technology | 2012

Switchable hydrophilicity solvents for lipid extraction from microalgae for biofuel production

Alaina R. Boyd; Pascale Champagne; Patrick J. McGinn; Karen M. MacDougall; Jeremy E. Melanson; Philip G. Jessop

A switchable hydrophilicity solvent (SHS) was studied for its effectiveness at extracting lipids from freeze-dried samples of Botryococcus braunii microalgae. The SHS N,N-dimethylcyclohexylamine extracted up to 22 wt.% crude lipid relative to the freeze-dried cell weight. The solvent was removed from the extract with water saturated with carbon dioxide at atmospheric pressure and recovered from the water upon de-carbonation of the mixture. Liquid chromatography-mass spectrometry (LC-MS) showed that the extracted lipids contained high concentrations of long chain tri-, di- and mono-acylglycerols, no phospholipids, and only 4-8% of residual solvent. Unlike extractions with conventional organic solvents, this new method requires neither distillation nor the use of volatile, flammable or chlorinated organic solvents.


Analytical and Bioanalytical Chemistry | 2011

Triacylglycerol profiling of microalgae strains for biofuel feedstock by liquid chromatography-high-resolution mass spectrometry.

Karen M. MacDougall; Jesse C. McNichol; Patrick J. McGinn; Stephen J. B. O’Leary; Jeremy E. Melanson

AbstractBiofuels from photosynthetic microalgae are quickly gaining interest as a viable carbon-neutral energy source. Typically, characterization of algal feedstock involves breaking down triacylglycerols (TAG) and other intact lipids, followed by derivatization of the fatty acids to fatty acid methyl esters prior to analysis by gas chromatography (GC). However, knowledge of the intact lipid profile could offer significant advantages for discovery stage biofuel research such as the selection of an algal strain or the optimization of growth and extraction conditions. Herein, lipid extracts from microalgae were directly analyzed by ultra-high pressure liquid chromatography–mass spectrometry (UHPLC-MS) using a benchtop Orbitrap mass spectrometer. Phospholipids, glycolipids, and TAGs were analyzed in the same chromatographic run, using a combination of accurate mass and diagnostic fragment ions for identification. Using this approach, greater than 100 unique TAGs were identified over the six algal strains studied and TAG profiles were obtained to assess their potential for biofuel applications. Under the growth conditions employed, Botryococcus braunii and Scenedesmus obliquus yielded the most comprehensive TAG profile with a high abundance of TAGs containing oleic acid. FigureOptical microscope image of Botryococcus braunii and high resolution mass spectrum of triacylglycerol 28:2/18:1/18:1 (inset)


Journal of Applied Phycology | 2015

Heterotrophic and mixotrophic cultivation of microalgae for biodiesel production in agricultural wastewaters and associated challenges—a critical review

Joshua Lowrey; Marianne Su-Ling Brooks; Patrick J. McGinn

Many studies have demonstrated that heterotrophic and mixotrophic growth for various microalgae species yields greater biomass and lipid content as compared to photoautotrophic cultivation. This review explores the possibility of leveraging the natural ability of the microorganisms to metabolize carbon heterotrophically and mixotrophically in agricultural wastewaters. This has the potential advantage of improving the overall economics for the production of biodiesel and value-added biomolecules from microalgae, mitigating an existing waste stream and minimizing water requirements. However, there are a number of challenges and gaps in scientific knowledge that suggest a need for ongoing research in the area. In this review, specific focus is dedicated to the metabolic mechanisms, reported performances, and practical challenges that contribute to the uncertainty of employing agricultural wastewaters for heterotrophic and mixotrophic microalgae cultures.


Lipids | 2012

Suitability of Soxhlet Extraction to Quantify Microalgal Fatty Acids as Determined by Comparison with In Situ Transesterification

Jesse McNichol; Karen M. MacDougall; Jeremy E. Melanson; Patrick J. McGinn

To assess Soxhlet extraction as a method for quantifying fatty acids (FA) of microalgae, crude lipid, FA content from Soxhlet extracts and FA content from in situ transesterification (ISTE) were compared. In most cases, gravimetric lipid content was considerably greater (up to sevenfold) than the FA content of the crude lipid extract. FA content from Soxhlet lipid extraction and ISTE were similar in 12/18 samples, whereas in 6/18 samples, total FA content from Soxhlet extraction was less than the ISTE procedure. Re-extraction of residual biomass from Soxhlet extraction with ISTE liberated a quantity of FA equivalent to this discrepancy. Employing acid hydrolysis before Soxhlet extraction yielded FA content roughly equivalent to ISTE, indicating that acidic conditions of ISTE are responsible for this observed greater recovery of FA. While crude lipid derived from Soxhlet extraction was not a useful proxy for FA content for the species tested, it is effective in most strains at extracting total saponifiable lipid. Lipid class analysis showed the source of FA was primarily polar lipids in most samples (12/18 lipid extracts contained <5% TAG), even in cases where total FA content was high (>15%). This investigation confirms the usefulness of ISTE, reveals limitations of gravimetric methods for projecting biodiesel potential of microalgae, and reinforces the need for intelligent screening using both FA and lipid class analysis.


Journal of Applied Phycology | 2013

Mono- and digalactosyldiacylglycerols: potent nitric oxide inhibitors from the marine microalga Nannochloropsis granulata

Arjun H. Banskota; Roumiana Stefanova; Pamela Gallant; Patrick J. McGinn

Chemical investigation of a marine microalga, Nannochloropsis granulata, led to the isolation of four digalactosyldiacylglycerols namely, (2S)-1-O-eicosapentaenoyl-2-O-palmitoyl-3-O-(β-d-galactopyranosyl-6-1α-d-galactopyranosyl)-glycerol (1), (2S)-1-O-eicosapentaenoyl-2-O-palmitoleoyl-3-O-(β-d-galactopyranosyl-6-1α-d-galactopyranosyl)-glycerol (2), (2S)-1-O-eicosapentaenoyl-2-O-myristoyl-3-O-(β-d-galactopyranosyl-6-1α-d-galactopyranosyl)-glycerol (3), and (2S)-1,2-bis-O-eicosapentaenoyl-3-O-(β-d-galactopyranosyl-6-1α-d-galactopyranosyl)-glycerol (4), together with their monogalactosyl analogs (5–8). Among the isolated galactolipids 2 and 3 were new natural products. Complete stereochemistry of 1, 4, 5, 7, and 8 was determined for the first time by both spectroscopic techniques and classical degradation methods. Both mono- and digalactosyldiacylglycerols isolated from N. granulata possessed strong nitric oxide (NO) inhibitory activity against lipopolysaccharide-induced NO production in RAW264.7 macrophage cells through downregulation of inducible nitric oxide synthase expression indicating the possible use as anti-inflammatory agents.


Journal of Applied Phycology | 2013

New diacylglyceryltrimethylhomoserines from the marine microalga Nannochloropsis granulata and their nitric oxide inhibitory activity

Arjun H. Banskota; Roumiana Stefanova; Sandra Sperker; Patrick J. McGinn

Chemical investigation of polar lipids from the marine eustigmatophyte microalga Nannochloropsis granulata led to the isolation of six betaine lipid diacylglyceryltrimethylhomoserine (DGTS), namely, (2S)-1,2-bis-O-eicosapentaenoylglyceryl-3-O-4′-(N,N,N-trimethyl)-homoserine (1), (2S)-1-O-eicosapentaenoyl-2-O-arachidonoylglyceryl-3-O-4′-(N,N,N-trimethyl)-homoserine (2), (2S)-1-O-eicosapentaenoyl-2-O-myristoylglyceryl-3-O-4′-(N,N,N-trimethyl)-homoserine (3), (2S)-1-O-eicosapentaenoyl-2-O-palmitoylglyceryl-3-O-4′-(N,N,N-trimethyl)-homoserine (4), (2S)-1-O-eicosapentaenoyl-2-O-palmitoleoylglyceryl-3-O-4′-(N,N,N-trimethyl)-homoserine (5), and (2S)-1-O-eicosapentaenoyl-2-O-linoleoylglyceryl-3-O-4′-(N,N,N-trimethyl)-homoserine (6). Structures of the isolated DGTSs were elucidated based on both spectroscopic technique and degradation methods. This is the first report of isolation of 1 in pure state, and 2–6 are all new compounds. The isolated betaine lipids showed dose-dependent nitric oxide (NO) inhibitory activity against lipopolysaccharide-induced nitric oxide production in RAW264.7 macrophage cells. Further study suggested that these betaine lipids (1–6) inhibit NO production in RAW264.7 macrophage cells through downregulation of inducible nitric oxide synthase expression, indicating the possible use as an anti-inflammatory agent. This is the first report of DGTS with anti-inflammatory activity.


Journal of Applied Microbiology | 2015

Simultaneous remediation of nutrients from liquid anaerobic digestate and municipal wastewater by the microalga Scenedesmus sp. AMDD grown in continuous chemostats

Kathryn E. Dickinson; W.J. Bjornsson; L.L. Garrison; Crystal G. Whitney; Kyoung C. Park; Arjun H. Banskota; Patrick J. McGinn

The primary aim of this study was to investigate the capacity of a microalga, Scenedesmus sp. AMDD, to remediate nutrients from municipal wastewater, either as the sole nutrient source or after blending with wastewater obtained from the anaerobic digestion of swine manure. A complimentary aim was to study and define the effects of these wastewaters on microalgal growth, biomass productivity and composition which have important implications for a commercial biofuels production system.


Biomedical Optics Express | 2014

Label-free hyperspectral nonlinear optical microscopy of the biofuel micro-algae Haematococcus Pluvialis

Aaron M. Barlow; Aaron D. Slepkov; Andrew Ridsdale; Patrick J. McGinn; Albert Stolow

We consider multi-modal four-wave mixing microscopies to be ideal tools for the in vivo study of carotenoid distributions within the important biofuel microalgae Haematococcus pluvialis. We show that hyperspectral coherent anti-Stokes Raman scattering (CARS) microscopy generates non-invasive, quantitative real-time concentrations maps of intracellular carotenoid distributions in live algae.

Collaboration


Dive into the Patrick J. McGinn's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kyoung C. Park

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Serge R. Guiot

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge