Patrick J. Moynihan
University of Guelph
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Patrick J. Moynihan.
Journal of Biological Chemistry | 2010
Patrick J. Moynihan; Anthony J. Clarke
The ape2 gene encoding a hypothetical O-acetylpeptidoglycan esterase was amplified from genomic DNA of Neisseria gonorrhoeae FA1090 and cloned to encode either the full-length protein or a truncated version lacking its hypothetical signal sequence. Expression trials revealed that production of the full-length version possessing either an N-terminal or C-terminal His6 tag was toxic to Escherichia coli transformants and that the host rapidly degraded the small amount of protein that was produced. An N-terminally truncated protein could be produced in sufficient yields for purification only if it possessed an N-terminal His6 tag. This form of the protein was isolated and purified to apparent homogeneity, and its enzymatic properties were characterized. Whereas the protein could bind to insoluble peptidoglycan, it did not function as an esterase. Phenotypic characterization of E. coli transformants producing various forms of the protein revealed that it functions instead to O-acetylate peptidoglycan within the periplasm, and it was thus renamed peptidoglycan O-acetyltransferase B. This activity was found to be dependent upon a second protein, which functions to translocate acetate from the cytoplasm to the periplasm, demonstrating that the O-acetylation of peptidoglycan in N. gonorrhoeae, and other Gram-negative bacteria, requires a two component system.
The International Journal of Biochemistry & Cell Biology | 2011
Patrick J. Moynihan; Anthony J. Clarke
The O-acetylation of peptidoglycan is now known to occur in 50 different bacterial species, both Gram positive and Gram negative, including a number of important human pathogens. This modification to the essential cell wall component of bacteria provides both a level of control over endogenous autolysins and protection from the lysozymes of innate immune systems. In this review, we describe the details of the pathways for peptidoglycan O-acetylation that are now beginning to emerge and we explore the possibility that the associated enzymes may present new candidates for antibacterial targets.
Journal of Biological Chemistry | 2014
Francesca A. Herlihey; Patrick J. Moynihan; Anthony J. Clarke
Background: FlgJ is required for flagella formation in Salmonella enterica. Results: The lytic activity of FlgJ was determined to be that of a β-N-acetylglucosaminidase using a novel assay. Conclusion: FlgJ is a hydrolase and not a lytic transglycosylase. Significance: This information is essential for the search and rational design of inhibitors that may serve as leads to a new class of antibiotics. The flagellum is a major virulence factor of motile pathogenic bacteria. This structure requires more than 50 proteins for its biogenesis and function, one of which is FlgJ. Homologs of FlgJ produced by the β- and γ-proteobacteria, such as Salmonella enterica, Vibrio spp., and both Sphingomonas sp. and Pseudomonas spp. are bifunctional, possessing an N-terminal domain responsible for proper rod assembly and a C-terminal domain possessing peptidoglycan lytic activity. Despite the amount of research conducted on FlgJ from these and other bacteria over the past 15 years, no biochemical analysis had been conducted on any FlgJ and consequently confusion exists as to whether the enzyme is a peptidoglycan hydrolase or a lytic transglycosylase. In this study, we present the development of a novel assay for glycoside lytic enzymes and its use to provide the first enzymatic characterization of the lytic domain of FlgJ from S. enterica as the model enzyme. Surprisingly, FlgJ functions as neither a muramidase nor a lytic transglycosylases but rather as a β-N-acetylglucosaminidase. As such, FlgJ represents the first autolysin with this activity to be characterized from a Gram-negative bacterium. At its optimal pH of 4.0, the Michaelis-Menten parameters of Km and kcat for FlgJ from S. enterica were determined to be 0.64 ± 0.18 mg ml−1 and 0.13 ± 0.016 s−1, respectively, using purified PG as substrate. Its catalytic residues were identified as Glu184 and Glu223.
Bioorganic Chemistry | 2014
Patrick J. Moynihan; David Sychantha; Anthony J. Clarke
Post-synthetic modification of the bacterial cell wall represents an important strategy for pathogenic bacteria to evade innate immunity and control autolysins. Modifications to the glycan backbone of peptidoglycan are generally restricted to the C-6 hydroxyl and C-3 amino moieties, with the most common being acetylation and deacetylation. In this review we discuss the pathways for O-acetylation, de-O-acetylation and N-deacetylation with an emphasis on the chemical-biological approaches used in their investigation. The current challenges in the field and the prospects of targeting these systems with novel therapeutics are also explored.
PLOS Pathogens | 2014
Perrin Baker; Tyler Ricer; Patrick J. Moynihan; Elena N. Kitova; Marthe T. C. Walvoort; Dustin J. Little; John C. Whitney; Karen Dawson; Joel T. Weadge; Howard Robinson; Dennis E. Ohman; Jeroen D. C. Codée; John S. Klassen; Anthony J. Clarke; P. Lynne Howell
The O-acetylation of polysaccharides is a common modification used by pathogenic organisms to protect against external forces. Pseudomonas aeruginosa secretes the anionic, O-acetylated exopolysaccharide alginate during chronic infection in the lungs of cystic fibrosis patients to form the major constituent of a protective biofilm matrix. Four proteins have been implicated in the O-acetylation of alginate, AlgIJF and AlgX. To probe the biological function of AlgJ, we determined its structure to 1.83 Å resolution. AlgJ is a SGNH hydrolase-like protein, which while structurally similar to the N-terminal domain of AlgX exhibits a distinctly different electrostatic surface potential. Consistent with other SGNH hydrolases, we identified a conserved catalytic triad composed of D190, H192 and S288 and demonstrated that AlgJ exhibits acetylesterase activity in vitro. Residues in the AlgJ signature motifs were found to form an extensive network of interactions that are critical for O-acetylation of alginate in vivo. Using two different electrospray ionization mass spectrometry (ESI-MS) assays we compared the abilities of AlgJ and AlgX to bind and acetylate alginate. Binding studies using defined length polymannuronic acid revealed that AlgJ exhibits either weak or no detectable polymer binding while AlgX binds polymannuronic acid specifically in a length-dependent manner. Additionally, AlgX was capable of utilizing the surrogate acetyl-donor 4-nitrophenyl acetate to catalyze the O-acetylation of polymannuronic acid. Our results, combined with previously published in vivo data, suggest that the annotated O-acetyltransferases AlgJ and AlgX have separate and distinct roles in O-acetylation. Our refined model for alginate acetylation places AlgX as the terminal acetlytransferase and provides a rationale for the variability in the number of proteins required for polysaccharide O-acetylation.
Analytical Biochemistry | 2013
Patrick J. Moynihan; Anthony J. Clarke
The O-acetylation of peptidoglycan occurs at the C-6 hydroxyl group of muramoyl residues in many human pathogens, both gram positive and gram negative, such as Staphylococcus aureus and species of Campylobacter, Helicobacter, Neisseria, and Bacillus, including Bacillus anthracis. The process is a maturation event being catalyzed either by integral membrane O-acetylpeptidoglycan transferase (Oat) of gram-positive bacteria or by a two-component peptidoglycan O-acetyltransferase system (PatA/PatB) in gram-negative cells. Here, we describe the development of the first in vitro assay for any peptidoglycan O-acetyltransferase using PatB from Neisseria gonorrhoeae as the model enzyme. This assay is based on the use of chromogenic p-nitrophenyl acetate as the donor substrate and chitooligosaccharides as model acceptor substrates in place of peptidoglycan. The identity of the O-acetylated chitooligosaccharides was confirmed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rates of transacetylations were determined spectrophotometrically by monitoring p-nitrophenol release after accounting for both spontaneous and enzyme-catalyzed hydrolysis of the acetate donor. Conditions were established for use of the assay in microtiter plate format, and its applicability was demonstrated by determining the first Michaelis-Menten kinetic parameters for PatB. The assay is readily amenable for application in the high-throughput screening for potential inhibitors of peptidoglycan O-acetyltransferases that may prove to be leads for novel classes of antibiotics.
Nature Communications | 2016
Katherine A. Abrahams; Chun-wa Chung; Sonja Ghidelli-Disse; Joaquín Rullas; María José Rebollo-López; Sudagar S. Gurcha; Jonathan A. G. Cox; Alfonso Mendoza; Elena Jimenez-Navarro; María S. Martínez-Martínez; Margarete Neu; Anthony Shillings; Paul Homes; Argyrides Argyrou; Ruth Casanueva; Nicholas J. Loman; Patrick J. Moynihan; Joël Lelièvre; Carolyn Selenski; Matthew Axtman; Laurent Kremer; Marcus Bantscheff; Iñigo Angulo-Barturen; Mónica Cacho Izquierdo; Nicholas Cammack; Gerard Drewes; Lluis Ballell; David Barros; Gurdyal S. Besra; Robert H. Bates
Phenotypic screens for bactericidal compounds are starting to yield promising hits against tuberculosis. In this regard, whole-genome sequencing of spontaneous resistant mutants generated against an indazole sulfonamide (GSK3011724A) identifies several specific single-nucleotide polymorphisms in the essential Mycobacterium tuberculosis β-ketoacyl synthase (kas) A gene. Here, this genomic-based target assignment is confirmed by biochemical assays, chemical proteomics and structural resolution of a KasA-GSK3011724A complex by X-ray crystallography. Finally, M. tuberculosis GSK3011724A-resistant mutants increase the in vitro minimum inhibitory concentration and the in vivo 99% effective dose in mice, establishing in vitro and in vivo target engagement. Surprisingly, the lack of target engagement of the related β-ketoacyl synthases (FabH and KasB) suggests a different mode of inhibition when compared with other Kas inhibitors of fatty acid biosynthesis in bacteria. These results clearly identify KasA as the biological target of GSK3011724A and validate this enzyme for further drug discovery efforts against tuberculosis.
Journal of Biological Chemistry | 2014
Patrick J. Moynihan; Anthony J. Clarke
Background: The O-acetylation of peptidoglycan in Gram-negative bacteria is catalyzed by PatB. Results: PatB can utilize a variety of acetyl donors for transfer to polymerized glycans containing N-acetyl groups and muroglycans containing tri- and tetrapeptide stems. Conclusion: PatB has broad specificity for acetyl donors but narrow specificity for acceptor glycans. Significance: This information will help with the identification of possible leads to novel classes of antibiotics. The O-acetylation of the essential cell wall polymer peptidoglycan is a major virulence factor identified in many bacteria, both Gram-positive and Gram-negative, including Staphylococcus aureus, Bacillus anthracis, Neisseria gonorrhoeae, and Neisseria meningitidis. With Gram-negative bacteria, the translocation of acetyl groups from the cytoplasm is performed by an integral membrane protein, PatA, for its transfer to peptidoglycan by O-acetyltransferase PatB, whereas a single bimodal membrane protein, OatA, appears to catalyze both reactions of the process in Gram-positive bacteria. Only phenotypic evidence existed in support of these pathways because no in vitro biochemical assay was available for their analysis, which reflected the complexities of investigating integral membrane proteins that act on a totally insoluble and heterogeneous substrate, such as peptidoglycan. In this study, we present the first biochemical and kinetic analysis of a peptidoglycan O-acetyltransferase using PatB from N. gonorrhoeae as the model system. The enzyme has specificity for muropeptides that possess tri- and tetrapeptide stems on muramyl residues. With chitooligosaccharides as substrates, rates of reaction increase with increasing degrees of polymerization to 5/6. This information will be valuable for the identification and development of peptidoglycan O-acetyltransferase inhibitors that could represent potential leads to novel classes of antibiotics.
Biochemistry | 2014
Patrick J. Moynihan; Anthony J. Clarke
The O-acetylation of the essential cell wall polymer peptidoglycan is essential in many bacteria for their integrity and survival, and it is catalyzed by peptidoglycan O-acetlytransferase B (PatB). Using PatB from Neisseria gonorrhoeae as the model, we have shown previously that the enzyme has specificity for polymeric muropeptides that possess tri- and tetrapeptide stems and that rates of reaction increase with increasing degrees of polymerization. Here, we present the catalytic mechanism of action of PatB, the first to be described for an O-acetyltransferase of any bacterial exopolysaccharide. The influence of pH on PatB activity was investigated, and pKa values of 6.4-6.45 and 6.25-6.35 for the enzyme-substrate complex (kcat vs pH) and the free enzyme (kcat·KM(-1) vs pH), respectively, were determined for the respective cosubstrates. The enzyme is partially inactivated by sulfonyl fluorides but not by EDTA, suggesting the participation of a serine residue in its catalytic mechanism. Alignment of the known and hypothetical PatB amino acid sequences identified Ser133, Asp302, and His305 as three invariant amino acid residues that could potentially serve as a catalytic triad. Replacement of Asp302 with Ala resulted in an enzyme with less than 20% residual activity, whereas activity was barely detectable with (His305 → Ala)PatB and (Ser133 → Ala)PatB was totally inactive. The reaction intermediate of the transferase reaction involving acetyl- and propionyl-acyl donors was trapped on both the wild-type and (Asp302 → Ala) enzymes and LC-MS/MS analysis of tryptic peptides identified Ser133 as the catalytic nucleophile. A transacetylase mechanism is proposed based on the mechanism of action of serine esterases.
Journal of Bacteriology | 2012
Igor Tiago; Ana Maranha; Vitor Mendes; Patrick J. Moynihan; Anthony J. Clarke; Sandra Macedo-Ribeiro; Pedro José Barbosa Pereira; Nuno Empadinhas
Mycobacterium hassiacum is a rapidly growing mycobacterium isolated from human urine and so far the most thermophilic among mycobacterial species. Its thermotolerance and phylogenetic relationship to M. tuberculosis render its proteins attractive tools for crystallization and structure-guided drug design. We report the draft genome sequence of M. hassiacum DSM 44199.