Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrick J. van der Vliet is active.

Publication


Featured researches published by Patrick J. van der Vliet.


Science | 2010

A Unifying Genetic Model for Facioscapulohumeral Muscular Dystrophy

Richard J.L.F. Lemmers; Patrick J. van der Vliet; Rinse Klooster; Sabrina Sacconi; Pilar Camaño; Johannes G. Dauwerse; Lauren Snider; Kirsten R. Straasheijm; Gert Jan B. van Ommen; George W. Padberg; Daniel G. Miller; Stephen J. Tapscott; Rabi Tawil; Rune R. Frants; Silvère M. van der Maarel

Addition by Contraction Facioscapulohumeral muscular dystrophy (FSHD) is one of the most common hereditary neuromuscular disorders in Western populations, affecting about 1 in 20,000 people. In most patients, the disorder is associated with contraction of a D4Z4 microsatellite repeat array on chromosome 4q, but this contraction can also occur in the absence of disease, so the underlying genetic mechanisms have remained elusive. Lemmers et al. (p. 1650, published online 19 August; see the Perspective by Mahadevan) now show that FSHD patients carry sequence variants that create a canonical polyadenylation signal for transcripts derived from DUX4, a homeobox gene straddling the last D4Z4 repeat unit and the adjacent sequence. Addition of poly(A) stabilizes the DUX4 transcript, which is likely to be a contributing factor in the disease. Sequence variants shared by patients with a genetically complex form of muscular dystrophy explain how the disease arises. Facioscapulohumeral muscular dystrophy (FSHD) is a common form of muscular dystrophy in adults that is foremost characterized by progressive wasting of muscles in the upper body. FSHD is associated with contraction of D4Z4 macrosatellite repeats on chromosome 4q35, but this contraction is pathogenic only in certain “permissive” chromosomal backgrounds. Here, we show that FSHD patients carry specific single-nucleotide polymorphisms in the chromosomal region distal to the last D4Z4 repeat. This FSHD-predisposing configuration creates a canonical polyadenylation signal for transcripts derived from DUX4, a double homeobox gene of unknown function that straddles the last repeat unit and the adjacent sequence. Transfection studies revealed that DUX4 transcripts are efficiently polyadenylated and are more stable when expressed from permissive chromosomes. These findings suggest that FSHD arises through a toxic gain of function attributable to the stabilized distal DUX4 transcript.


Nature Genetics | 2012

Digenic inheritance of an SMCHD1 mutation and an FSHD-permissive D4Z4 allele causes facioscapulohumeral muscular dystrophy type 2

Richard J.L.F. Lemmers; Rabi Tawil; Lisa M. Petek; Judit Balog; Gregory J. Block; Gijs W.E. Santen; Amanda M. Amell; Patrick J. van der Vliet; Rowida Almomani; Kirsten R. Straasheijm; Yvonne D. Krom; Rinse Klooster; Yu-chun Sun; Johan T. den Dunnen; Quinta Helmer; Colleen M. Donlin-Smith; George W. Padberg; Baziel G.M. van Engelen; Jessica C. de Greef; Annemieke Aartsma-Rus; Rune R. Frants; Marianne de Visser; Claude Desnuelle; Sabrina Sacconi; Galina N. Filippova; Bert Bakker; Michael J. Bamshad; Stephen J. Tapscott; Daniel G. Miller; Silvère M. van der Maarel

Facioscapulohumeral dystrophy (FSHD) is characterized by chromatin relaxation of the D4Z4 macrosatellite array on chromosome 4 and expression of the D4Z4-encoded DUX4 gene in skeletal muscle. The more common form, autosomal dominant FSHD1, is caused by contraction of the D4Z4 array, whereas the genetic determinants and inheritance of D4Z4 array contraction–independent FSHD2 are unclear. Here, we show that mutations in SMCHD1 (encoding structural maintenance of chromosomes flexible hinge domain containing 1) on chromosome 18 reduce SMCHD1 protein levels and segregate with genome-wide D4Z4 CpG hypomethylation in human kindreds. FSHD2 occurs in individuals who inherited both the SMCHD1 mutation and a normal-sized D4Z4 array on a chromosome 4 haplotype permissive for DUX4 expression. Reducing SMCHD1 levels in skeletal muscle results in D4Z4 contraction–independent DUX4 expression. Our study identifies SMCHD1 as an epigenetic modifier of the D4Z4 metastable epiallele and as a causal genetic determinant of FSHD2 and possibly other human diseases subject to epigenetic regulation.


American Journal of Human Genetics | 2007

Specific Sequence Variations within the 4q35 Region Are Associated with Facioscapulohumeral Muscular Dystrophy

Richard J.L.F. Lemmers; M. Wohlgemuth; Kristiaan J. van der Gaag; Patrick J. van der Vliet; Corrie M.M. van Teijlingen; Peter de Knijff; George W. Padberg; Rune R. Frants; Silvère M. van der Maarel

Autosomal dominant facioscapulohumeral muscular dystrophy (FSHD) is mainly characterized by progressive wasting and weakness of the facial, shoulder, and upper-arm muscles. FSHD is caused by contraction of the macrosatellite repeat D4Z4 on chromosome 4q35. The D4Z4 repeat is very polymorphic in length, and D4Z4 rearrangements occur almost exclusively via intrachromosomal gene conversions. Several disease mechanisms have been proposed, but none of these models can comprehensively explain FSHD, because repeat contraction alone is not sufficient to cause disease. Almost-identical D4Z4-repeat arrays have been identified on chromosome 10q26 and on two equally common chromosome 4 variants, 4qA and 4qB. Yet only repeat contractions of D4Z4 on chromosome 4qA cause FSHD; contractions on the other chromosomes are nonpathogenic. We hypothesized that allele-specific sequence differences among 4qA, 4qB, and 10q alleles underlie the 4qA specificity of FSHD. Sequence variations between these alleles have been described before, but the extent and significance of these variations proximal to, within, and distal to D4Z4 have not been studied in detail. We examined additional sequence variations in the FSHD locus, including a relatively stable simple sequence-length polymorphism proximal to D4Z4, a single-nucleotide polymorphism (SNP) within D4Z4, and the A/B variation distal to D4Z4. On the basis of these polymorphisms, we demonstrate that the subtelomeric domain of chromosome 4q can be subdivided into nine distinct haplotypes, of which three carry the distal 4qA variation. Interestingly, we show that repeat contractions in two of the nine haplotypes, one of which is a 4qA haplotype, are not associated with FSHD. We also show that each of these haplotypes has its unique sequence signature, and we propose that specific SNPs in the disease haplotype are essential for the development of FSHD.


American Journal of Human Genetics | 2013

The FSHD2 Gene SMCHD1 Is a Modifier of Disease Severity in Families Affected by FSHD1

Sabrina Sacconi; Richard J.L.F. Lemmers; Judit Balog; Patrick J. van der Vliet; Pauline Lahaut; Merlijn P. van Nieuwenhuizen; Kirsten R. Straasheijm; Rashmie D. Debipersad; Marianne Vos-Versteeg; Leonardo Salviati; Alberto Casarin; Elena Pegoraro; Rabi Tawil; Egbert Bakker; Stephen J. Tapscott; Claude Desnuelle; Silvère M. van der Maarel

Facioscapulohumeral muscular dystrophy type 1 (FSHD1) is caused by contraction of the D4Z4 repeat array on chromosome 4 to a size of 1-10 units. The residual number of D4Z4 units inversely correlates with clinical severity, but significant clinical variability exists. Each unit contains a copy of the DUX4 retrogene. Repeat contractions are associated with changes in D4Z4 chromatin structure that increase the likelihood of DUX4 expression in skeletal muscle, but only when the repeat resides in a genetic background that contains a DUX4 polyadenylation signal. Mutations in the structural maintenance of chromosomes flexible hinge domain containing 1 (SMCHD1) gene, encoding a chromatin modifier of D4Z4, also result in the increased likelihood of DUX4 expression in individuals with a rare form of FSHD (FSHD2). Because SMCHD1 directly binds to D4Z4 and suppresses somatic expression of DUX4, we hypothesized that SMCHD1 may act as a genetic modifier in FSHD1. We describe three unrelated individuals with FSHD1 presenting an unusual high clinical severity based on their upper-sized FSHD1 repeat array of nine units. Each of these individuals also carries a mutation in the SMCHD1 gene. Familial carriers of the FSHD1 allele without the SMCHD1 mutation were only mildly affected, suggesting a modifier effect of the SMCHD1 mutation. Knocking down SMCHD1 in FSHD1 myotubes increased DUX4 expression, lending molecular support to a modifier role for SMCHD1 in FSHD1. We conclude that FSHD1 and FSHD2 share a common pathophysiological pathway in which the FSHD2 gene can act as modifier for disease severity in families affected by FSHD1.


American Journal of Human Genetics | 2010

Worldwide Population Analysis of the 4q and 10q Subtelomeres Identifies Only Four Discrete Interchromosomal Sequence Transfers in Human Evolution

Richard J.L.F. Lemmers; Patrick J. van der Vliet; Kristiaan J. van der Gaag; Sofia Zuniga; Rune R. Frants; Peter de Knijff; Silvère M. van der Maarel

Subtelomeres are dynamic structures composed of blocks of homologous DNA sequences. These so-called duplicons are dispersed over many chromosome ends. We studied the human 4q and 10q subtelomeres, which contain the polymorphic macrosatellite repeat D4Z4 and which share high sequence similarity over a region of, on average, >200 kb. Sequence analysis of four polymorphic markers in the African, European, and Asian HAPMAP panels revealed 17 subtelomeric 4q and eight subtelomeric 10qter haplotypes. Haplotypes that are composed of a mixture of 4q and 10q sequences were detected at frequencies >10% in all three populations, seemingly supporting a mechanism of ongoing interchromosomal exchanges between these chromosomes. We constructed an evolutionary network of most haplotypes and identified the 4q haplotype ancestral to all 4q and 10q haplotypes. According to the network, all subtelomeres originate from only four discrete sequence-transfer events during human evolution, and haplotypes with mixtures of 4q- and 10q-specific sequences represent intermediate structures in the transition from 4q to 10q subtelomeres. Haplotype distribution studies on a large number of globally dispersed human DNA samples from the HGDP-CEPH panel supported our findings and show that all haplotypes were present before human migration out of Africa. D4Z4 repeat array contractions on the 4A161 haplotype cause Facioscapulohumeral muscular dystrophy (FSHD), whereas contractions on most other haplotypes are nonpathogenic. We propose that the limited occurrence of interchromosomal sequence transfers results in an accumulation of haplotype-specific polymorphisms that can explain the unique association of FSHD with D4Z4 contractions in a single 4q subtelomere.


Human Molecular Genetics | 2015

Inter-individual differences in CpG methylation at D4Z4 correlate with clinical variability in FSHD1 and FSHD2

Richard J.L.F. Lemmers; Jelle J. Goeman; Patrick J. van der Vliet; Merlijn P. van Nieuwenhuizen; Judit Balog; Marianne Vos-Versteeg; Pilar Camaño; Maria Antonia Ramos Arroyo; Ivonne Jericó; Mark T. Rogers; Daniel G. Miller; Meena Upadhyaya; Jan J. Verschuuren; Adolfo Lopez de Munain Arregui; Baziel G.M. van Engelen; George W. Padberg; Sabrina Sacconi; Rabi Tawil; Stephen J. Tapscott; Bert Bakker; Silvère M. van der Maarel

Facioscapulohumeral muscular dystrophy (FSHD: MIM#158900) is a common myopathy with marked but largely unexplained clinical inter- and intra-familial variability. It is caused by contractions of the D4Z4 repeat array on chromosome 4 to 1-10 units (FSHD1), or by mutations in the D4Z4-binding chromatin modifier SMCHD1 (FSHD2). Both situations lead to a partial opening of the D4Z4 chromatin structure and transcription of D4Z4-encoded polyadenylated DUX4 mRNA in muscle. We measured D4Z4 CpG methylation in control, FSHD1 and FSHD2 individuals and found a significant correlation with the D4Z4 repeat array size. After correction for repeat array size, we show that the variability in clinical severity in FSHD1 and FSHD2 individuals is dependent on individual differences in susceptibility to D4Z4 hypomethylation. In FSHD1, for individuals with D4Z4 repeat arrays of 1-6 units, the clinical severity mainly depends on the size of the D4Z4 repeat. However, in individuals with arrays of 7-10 units, the clinical severity also depends on other factors that regulate D4Z4 methylation because affected individuals, but not non-penetrant mutation carriers, have a greater reduction of D4Z4 CpG methylation than can be expected based on the size of the pathogenic D4Z4 repeat array. In FSHD2, this epigenetic susceptibility depends on the nature of the SMCHD1 mutation in combination with D4Z4 repeat array size with dominant negative mutations being more deleterious than haploinsufficiency mutations. Our study thus identifies an epigenetic basis for the striking variability in onset and disease progression that is considered a clinical hallmark of FSHD.


American Journal of Pathology | 2010

Prenatal Exposure to apoE Deficiency and Postnatal Hypercholesterolemia Are Associated with Altered Cell-Specific Lysine Methyltransferase and Histone Methylation Patterns in the Vasculature

Fanneke E. Alkemade; Patrick J. van der Vliet; Peter Henneman; Ko Willems van Dijk; Beerend P. Hierck; J. Conny van Munsteren; Joyce A. Scheerman; Jelle J. Goeman; Louis M. Havekes; Adriana C. Gittenberger-de Groot; Peter J. van den Elsen; Marco C. DeRuiter

We recently demonstrated that neointima formation of adult heterozygous apolipoprotein E (apoE(+/-)) offspring from hypercholesterolemic apoE(-/-) mothers was significantly increased as compared with genetically identical apoE(+/-) offspring from normocholesterolemic wild-type mothers. Since atherosclerosis is the consequence of a complex microenvironment and local cellular interactions, the effects of in utero programming and type of postnatal diet on epigenetic histone modifications in the vasculature were studied in both groups of offspring. An immunohistochemical approach was used to detect cell-specific histone methylation modifications and expression of accompanying lysine methyltransferases in the carotid arteries. Differences in histone triple-methylation modifications in vascular endothelial and smooth muscle cells revealed that the offspring from apoE(-/-) mothers had significantly different responses to a high cholesterol diet when compared with offspring from wild-type mothers. Our results suggest that both in utero programming and postnatal hypercholesterolemia affect epigenetic patterning in the vasculature, thereby providing novel insights regarding initiation and progression of vascular disease in adults.


American Journal of Human Genetics | 2016

Mutations in DNMT3B Modify Epigenetic Repression of the D4Z4 Repeat and the Penetrance of Facioscapulohumeral Dystrophy

Marlinde L. van den Boogaard; Richard J.L.F. Lemmers; Judit Balog; M. Wohlgemuth; Mari Auranen; Satomi Mitsuhashi; Patrick J. van der Vliet; Kirsten R. Straasheijm; Rob F.P. van den Akker; Marjolein Kriek; Marlies Laurense-Bik; Vered Raz; Monique M. van Ostaijen-ten Dam; Kerstin Hansson; Elly van der Kooi; Sari Kiuru-Enari; Bjarne Udd; Maarten J. D. van Tol; Ichizo Nishino; Rabi Tawil; Stephen J. Tapscott; Baziel G.M. van Engelen; Silvère M. van der Maarel

Facioscapulohumeral dystrophy (FSHD) is associated with somatic chromatin relaxation of the D4Z4 repeat array and derepression of the D4Z4-encoded DUX4 retrogene coding for a germline transcription factor. Somatic DUX4 derepression is caused either by a 1-10 unit repeat-array contraction (FSHD1) or by mutations in SMCHD1, which encodes a chromatin repressor that binds to D4Z4 (FSHD2). Here, we show that heterozygous mutations in DNA methyltransferase 3B (DNMT3B) are a likely cause of D4Z4 derepression associated with low levels of DUX4 expression from the D4Z4 repeat and increased penetrance of FSHD. Recessive mutations in DNMT3B were previously shown to cause immunodeficiency, centromeric instability, and facial anomalies (ICF) syndrome. This study suggests that transcription of DUX4 in somatic cells is modified by variations in its epigenetic state and provides a basis for understanding the reduced penetrance of FSHD within families.


BMC Genomics | 2013

Genome-wide analysis of macrosatellite repeat copy number variation in worldwide populations: evidence for differences and commonalities in size distributions and size restrictions

Mireille Schaap; Richard Jlf Lemmers; Roel Maassen; Patrick J. van der Vliet; Lennart F. Hoogerheide; Herman K. van Dijk; Nalan Basturk; Peter de Knijff; Silvère M. van der Maarel

BackgroundMacrosatellite repeats (MSRs), usually spanning hundreds of kilobases of genomic DNA, comprise a significant proportion of the human genome. Because of their highly polymorphic nature, MSRs represent an extreme example of copy number variation, but their structure and function is largely understudied. Here, we describe a detailed study of six autosomal and two X chromosomal MSRs among 270 HapMap individuals from Central Europe, Asia and Africa. Copy number variation, stability and genetic heterogeneity of the autosomal macrosatellite repeats RS447 (chromosome 4p), MSR5p (5p), FLJ40296 (13q), RNU2 (17q) and D4Z4 (4q and 10q) and X chromosomal DXZ4 and CT47 were investigated.ResultsRepeat array size distribution analysis shows that all of these MSRs are highly polymorphic with the most genetic variation among Africans and the least among Asians. A mitotic mutation rate of 0.4-2.2% was observed, exceeding meiotic mutation rates and possibly explaining the large size variability found for these MSRs. By means of a novel Bayesian approach, statistical support for a distinct multimodal rather than a uniform allele size distribution was detected in seven out of eight MSRs, with evidence for equidistant intervals between the modes.ConclusionsThe multimodal distributions with evidence for equidistant intervals, in combination with the observation of MSR-specific constraints on minimum array size, suggest that MSRs are limited in their configurations and that deviations thereof may cause disease, as is the case for facioscapulohumeral muscular dystrophy. However, at present we cannot exclude that there are mechanistic constraints for MSRs that are not directly disease-related. This study represents the first comprehensive study of MSRs in different human populations by applying novel statistical methods and identifies commonalities and differences in their organization and function in the human genome.


Epigenetics | 2015

Increased DUX4 expression during muscle differentiation correlates with decreased SMCHD1 protein levels at D4Z4

Judit Balog; Peter E. Thijssen; Sean C. Shadle; Kirsten R. Straasheijm; Patrick J. van der Vliet; Yvonne D. Krom; Marlinde L. van den Boogaard; Annika de Jong; Richard J.L.F. Lemmers; Rabi Tawil; Stephen J. Tapscott; Silvère M. van der Maarel

Facioscapulohumeral muscular dystrophy is caused by incomplete epigenetic repression of the transcription factor DUX4 in skeletal muscle. A copy of DUX4 is located within each unit of the D4Z4 macrosatellite repeat array and its derepression in somatic cells is caused by either repeat array contraction (FSHD1) or by mutations in the chromatin repressor SMCHD1 (FSHD2). While DUX4 expression has thus far only been detected in FSHD muscle and muscle cell cultures, and increases with in vitro myogenic differentiation, the D4Z4 chromatin structure has only been studied in proliferating myoblasts or non-myogenic cells. We here show that SMCHD1 protein levels at D4Z4 decline during muscle cell differentiation and correlate with DUX4 derepression. In FSHD2, but not FSHD1, the loss of SMCHD1 repressor activity is partially compensated by increased Polycomb Repressive Complex 2 (PRC2)–mediated H3K27 trimethylation at D4Z4, a situation that can be mimicked by SMCHD1 knockdown in control myotubes. In contrast, moderate overexpression of SMCHD1 results in DUX4 silencing in FSHD1 and FSHD2 myotubes demonstrating that DUX4 derepression in FSHD is reversible. Together, we show that in FSHD1 and FSHD2 the decline in SMCHD1 protein levels during muscle cell differentiation renders skeletal muscle sensitive to DUX4.

Collaboration


Dive into the Patrick J. van der Vliet's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard J.L.F. Lemmers

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Rabi Tawil

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar

Stephen J. Tapscott

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

George W. Padberg

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Judit Balog

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Kirsten R. Straasheijm

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Nicol C. Voermans

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Sabrina Sacconi

University of Nice Sophia Antipolis

View shared research outputs
Researchain Logo
Decentralizing Knowledge