Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrick Kiefer is active.

Publication


Featured researches published by Patrick Kiefer.


Applied and Environmental Microbiology | 2004

Comparative Metabolic Flux Analysis of Lysine-Producing Corynebacterium glutamicum Cultured on Glucose or Fructose

Patrick Kiefer; Elmar Heinzle; Oskar Zelder; Christoph Wittmann

ABSTRACT A comprehensive approach to 13C tracer studies, labeling measurements by gas chromatography-mass spectrometry, metabolite balancing, and isotopomer modeling, was applied for comparative metabolic network analysis of lysine-producing Corynebacterium glutamicum on glucose or fructose. Significantly reduced yields of lysine and biomass and enhanced formation of dihydroxyacetone, glycerol, and lactate in comparison to those for glucose resulted on fructose. Metabolic flux analysis revealed drastic differences in intracellular flux depending on the carbon source applied. On fructose, flux through the pentose phosphate pathway (PPP) was only 14.4% of the total substrate uptake flux and therefore markedly decreased compared to that for glucose (62.0%). This result is due mainly to (i) the predominance of phosphoenolpyruvate-dependent phosphotransferase systems for fructose uptake (PTSFructose) (92.3%), resulting in a major entry of fructose via fructose 1,6-bisphosphate, and (ii) the inactivity of fructose 1,6-bisphosphatase (0.0%). The uptake of fructose during flux via PTSMannose was only 7.7%. In glucose-grown cells, the flux through pyruvate dehydrogenase (70.9%) was much less than that in fructose-grown cells (95.2%). Accordingly, flux through the tricarboxylic acid cycle was decreased on glucose. Normalized to that for glucose uptake, the supply of NADPH during flux was only 112.4% on fructose compared to 176.9% on glucose, which might explain the substantially lower lysine yield of C. glutamicum on fructose. Balancing NADPH levels even revealed an apparent deficiency of NADPH on fructose, which is probably overcome by in vivo activity of malic enzyme. Based on these results, potential targets could be identified for optimization of lysine production by C. glutamicum on fructose, involving (i) modification of flux through the two PTS for fructose uptake, (ii) amplification of fructose 1,6-bisphosphatase to increase flux through the PPP, and (iii) knockout of a not-yet-annotated gene encoding dihydroxyacetone phosphatase or kinase activity to suppress overflow metabolism. Statistical evaluation revealed high precision of the estimates of flux, so the observed differences for metabolic flux are clearly substrate specific.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Demonstration of the ethylmalonyl-CoA pathway by using 13C metabolomics

Rémi Peyraud; Patrick Kiefer; Philipp Christen; Stéphane Massou; Jean-Charles Portais; Julia A. Vorholt

The assimilation of one-carbon (C1) compounds, such as methanol, by serine cycle methylotrophs requires the continuous regeneration of glyoxylate. Instead of the glyoxylate cycle, this process is achieved by a not yet established pathway where CoA thioesters are known to play a key role. We applied state-of-the-art metabolomics and 13C metabolomics strategies to demonstrate how glyoxylate is generated during methylotrophic growth in the isocitrate lyase-negative methylotroph Methylobacterium extorquens AM1. High-resolution mass spectrometry showed the presence of CoA thioesters specific to the recently proposed ethylmalonyl-CoA pathway. The operation of this pathway was demonstrated by short-term 13C-labeling experiments, which allowed determination of the sequence of reactions from the order of label incorporation into the different CoA derivatives. Analysis of 13C positional enrichment in glycine by NMR was consistent with the predicted labeling pattern as a result of the operation of the ethylmalonyl-CoA pathway and the unique operation of the latter for glyoxylate generation during growth on methanol. The results also revealed that 2 molecules of glyoxylate were regenerated in this process. This work provides a complete pathway for methanol assimilation in the model methylotroph M. extorquens AM1 and represents an important step toward the determination of the overall topology of its metabolic network. The operation of the ethylmalonyl-CoA pathway in M. extorquens AM1 has major implications for the physiology of these methylotrophs and their role in nature, and it also provides a common ground for C1 and C2 compound assimilation in isocitrate lyase-negative bacteria.


Journal of Biological Chemistry | 2008

The Legionella Autoinducer Synthase LqsA Produces an α-Hydroxyketone Signaling Molecule

Thomas Spirig; André N. Tiaden; Patrick Kiefer; Carmen Buchrieser; Julia A. Vorholt; Hubert Hilbi

The opportunistic pathogen Legionella pneumophila replicates in human lung macrophages and in free-living amoebae. To accommodate the transfer between host cells, L. pneumophila switches from a replicative to a transmissive phase. L. pneumophila harbors a gene cluster homologous to the Vibrio cholerae cqsAS quorum sensing system, encoding a putative autoinducer synthase (lqsA) and a sensor kinase (lqsS), which flank a response regulator (lqsR). LqsR is an element of the L. pneumophila virulence regulatory network, which promotes pathogen-host cell interactions and inhibits entry into the replicative growth phase. Here, we show that lqsA functionally complements a V. cholerae cqsA autoinducer synthase deletion mutant and, upon expression in L. pneumophila or Escherichia coli, produces the diffusible signaling molecule LAI-1 (Legionella autoinducer-1). LAI-1 is distinct from CAI-1 (Cholerae autoinducer-1) and was identified as 3-hydroxypentadecan-4-one using liquid chromatography coupled to high resolution tandem mass spectrometry. The activity of both LqsA and CqsA was abolished upon mutation of a conserved lysine, and covalent binding of the cofactor pyridoxal 5′-phosphate to this lysine was confirmed by mass spectrometry. Thus, LqsA and CqsA belong to a family of pyridoxal 5′-phosphate-dependent autoinducer synthases, which produce the α-hydroxyketone signaling molecules LAI-1 and CAI-1.


Analytical Biochemistry | 2008

Quantitative metabolome analysis using liquid chromatography-high-resolution mass spectrometry.

Patrick Kiefer; Jean-Charles Portais; Julia A. Vorholt

In this report, we introduce a liquid chromatography single-mass spectrometry method for metabolome quantification, using the LTQ Orbitrap high-resolution mass spectrometer. Analytes were separated with hydrophilic interaction liquid chromatography. At a working resolution of 30,000 (at m/z 400), the limit of detection varied from 50 fmol to 5 pmol for 25 metabolites tested. In terms of metabolite concentration, the linearity was about 2 to 3 orders of magnitude for most compounds (R(2)>0.99). To determine the accuracy of the system in complex sample matrices, the isotope dilution method was evaluated from mixtures of pure compounds and uniformly 13C-labeled cell extracts. With the application of this method, quantification was possible within single runs even when the pool sizes of individual metabolites varied from 0.13 to 55.6 microM. As a case study, intracellular concentrations of central metabolites were determined for Methylobacterium extorquens AM1 during growth on two different carbon sources, methanol and succinate. Reproducible results from technical and biological repetitions were obtained that revealed significant variations of intracellular metabolite pool sizes, depending on the carbon source. The LTQ Obitrap offers new perspectives and strategies for metabolome quantification.


Applied and Environmental Microbiology | 2004

Metabolic Fluxes in Corynebacterium glutamicum during Lysine Production with Sucrose as Carbon Source

Christoph Wittmann; Patrick Kiefer; Oskar Zelder

ABSTRACT Metabolic fluxes in the central metabolism were determined for lysine-producing Corynebacterium glutamicum ATCC 21526 with sucrose as a carbon source, providing an insight into molasses-based industrial production processes with this organism. For this purpose, 13C metabolic flux analysis with parallel studies on [1-13CFru]sucrose, [1-13CGlc]sucrose, and [13C6Fru]sucrose was carried out. C. glutamicum directed 27.4% of sucrose toward extracellular lysine. The strain exhibited a relatively high flux of 55.7% (normalized to an uptake flux of hexose units of 100%) through the pentose phosphate pathway (PPP). The glucose monomer of sucrose was completely channeled into the PPP. After transient efflux, the fructose residue was mainly taken up by the fructose-specific phosphotransferase system (PTS) and entered glycolysis at the level of fructose-1,6-bisphosphate. Glucose-6-phosphate isomerase operated in the gluconeogenetic direction from fructose-6-phosphate to glucose-6-phosphate and supplied additional carbon (7.2%) from the fructose part of the substrate toward the PPP. This involved supply of fructose-6-phosphate from the fructose part of sucrose either by PTSMan or by fructose-1,6-bisphosphatase. C. glutamicum further exhibited a high tricarboxylic acid (TCA) cycle flux of 78.2%. Isocitrate dehydrogenase therefore significantly contributed to the total NADPH supply of 190%. The demands for lysine (110%) and anabolism (32%) were lower than the supply, resulting in an apparent NADPH excess. The high TCA cycle flux and the significant secretion of dihydroxyacetone and glycerol display interesting targets to be approached by genetic engineers for optimization of the strain investigated.


Science | 2012

GFAJ-1 Is an Arsenate-Resistant, Phosphate-Dependent Organism

Tobias J. Erb; Patrick Kiefer; Bodo Hattendorf; Detlef Günther; Julia A. Vorholt

Resisting Arsenic The discovery of a bacterium living in the extreme conditions of Mono Lake, California, created a major controversy because it was claimed to be able to grow solely on arsenic and could substitute arsenate for phosphate in its key macromolecules, including DNA. Working with the same Halomonas spp. bacterium, known as GFAJ-1, and ultrapure reagents, Erb et al. (p. 467) found that the bacterium needed a low level of phosphate (1.6 µM) to grow at all. Rather than significant specific arsenic incorporation, when the organism was grown in 40 mM arsenic, its nucleic acids acquired a trace of arsenic. Similarly, Reaves et al. (p. 470) found that GFAJ-1 could not grow in the absence of phosphate and, moreover, that its growth was not stimulated by the addition of arsenate, although a trace amount of arsenic was also detected in DNA. Thus, GFAJ-1 shows no particular facility to substitute arsenic for phosphate, when phosphate is limiting, but it can tolerate high concentrations of the poison while efficiently scavenging phosphate. Claims of arsenic substitution for phosphorus in the biomolecules of a Mono Lake bacterium are not independently reproduced. The bacterial isolate GFAJ-1 has been proposed to substitute arsenic for phosphorus to sustain growth. We have shown that GFAJ-1 is able to grow at low phosphate concentrations (1.7 μM), even in the presence of high concentrations of arsenate (40 mM), but lacks the ability to grow in phosphorus-depleted (<0.3 μM), arsenate-containing medium. High-resolution mass spectrometry analyses revealed that phosphorylated central metabolites and phosphorylated nucleic acids predominated. A few arsenylated compounds, including C6 sugar arsenates, were detected in extracts of GFAJ-1, when GFAJ-1 was incubated with arsenate, but further experiments showed they formed abiotically. Inductively coupled plasma mass spectrometry confirmed the presence of phosphorus in nucleic acid extracts, while arsenic could not be detected and was below 1 per mil relative to phosphorus. Taken together, we conclude that GFAJ-1 is an arsenate-resistant, but still a phosphate-dependent, bacterium.


BMC Systems Biology | 2011

Genome-scale reconstruction and system level investigation of the metabolic network of Methylobacterium extorquens AM1

Rémi Peyraud; Kathrin Schneider; Patrick Kiefer; Stéphane Massou; Julia A. Vorholt; Jean-Charles Portais

BackgroundMethylotrophic microorganisms are playing a key role in biogeochemical processes - especially the global carbon cycle - and have gained interest for biotechnological purposes. Significant progress was made in the recent years in the biochemistry, genetics, genomics, and physiology of methylotrophic bacteria, showing that methylotrophy is much more widespread and versatile than initially assumed. Despite such progress, system-level description of the methylotrophic metabolism is currently lacking, and much remains to understand regarding the network-scale organization and properties of methylotrophy, and how the methylotrophic capacity emerges from this organization, especially in facultative organisms.ResultsIn this work, we report on the integrated, system-level investigation of the metabolic network of the facultative methylotroph Methylobacterium extorquens AM1, a valuable model of methylotrophic bacteria. The genome-scale metabolic network of the bacterium was reconstructed and contains 1139 reactions and 977 metabolites. The sub-network operating upon methylotrophic growth was identified from both in silico and experimental investigations, and 13C-fluxomics was applied to measure the distribution of metabolic fluxes under such conditions. The core metabolism has a highly unusual topology, in which the unique enzymes that catalyse the key steps of C1 assimilation are tightly connected by several, large metabolic cycles (serine cycle, ethylmalonyl-CoA pathway, TCA cycle, anaplerotic processes). The entire set of reactions must operate as a unique process to achieve C1 assimilation, but was shown to be structurally fragile based on network analysis. This observation suggests that in nature a strong pressure of selection must exist to maintain the methylotrophic capability. Nevertheless, substantial substrate cycling could be measured within C2/C3/C4 inter-conversions, indicating that the metabolic network is highly versatile around a flexible backbone of central reactions that allows rapid switching to multi-carbon sources.ConclusionsThis work emphasizes that the metabolism of M. extorquens AM1 is adapted to its lifestyle not only in terms of enzymatic equipment, but also in terms of network-level structure and regulation. It suggests that the metabolism of the bacterium has evolved both structurally and functionally to an efficient but transitory utilization of methanol. Besides, this work provides a basis for metabolic engineering to convert methanol into value-added products.


Microbiology | 2010

Functional investigation of methanol dehydrogenase-like protein XoxF in Methylobacterium extorquens AM1.

Sabrina Schmidt; Philipp Christen; Patrick Kiefer; Julia A. Vorholt

Methanol dehydrogenase-like protein XoxF of Methylobacterium extorquens AM1 exhibits a sequence identity of 50 % to the catalytic subunit MxaF of periplasmic methanol dehydrogenase in the same organism. The latter has been characterized in detail, identified as a pyrroloquinoline quinone (PQQ)-dependent protein, and shown to be essential for growth in the presence of methanol in this methylotrophic model bacterium. In contrast, the function of XoxF in M. extorquens AM1 has not yet been elucidated, and a phenotype remained to be described for a xoxF mutant. Here, we found that a xoxF mutant is less competitive than the wild-type during colonization of the phyllosphere of Arabidopsis thaliana, indicating a function for XoxF during plant colonization. A comparison of the growth parameters of the M. extorquens AM1 xoxF mutant with those of the wild-type during exponential growth revealed a reduced methanol uptake rate and a reduced growth rate for the xoxF mutant of about 30 %. Experiments with cells starved for carbon revealed that methanol oxidation in the xoxF mutant occurs less rapidly compared with the wild-type, especially in the first minutes after methanol addition. A distinct phenotype for the xoxF mutant was also observed when formate and CO(2) production were measured after the addition of methanol or formaldehyde to starved cells. The wild-type, but not the xoxF mutant, accumulated formate upon substrate addition and had a 1 h lag in CO(2) production under the experimental conditions. Determination of the kinetic properties of the purified enzyme showed a conversion capacity for both formaldehyde and methanol. The results suggest that XoxF is involved in one-carbon metabolism in M. extorquens AM1.


Analytical Chemistry | 2011

Nanoscale ion-pair reversed-phase HPLC-MS for sensitive metabolome analysis.

Patrick Kiefer; Nathanaël Delmotte; Julia A. Vorholt

In this article, we introduce a method using nanoscale ion-pair reversed-phase high-performance liquid chromatography (nano-IP-RP-HPLC) hyphenated to nanoelectrospray ionization high-resolution mass spectrometry (nano-ESI-HRMS) to separate and identify metabolites in cell extracts. Separation of metabolites was performed on a 100 μm i.d. C18 column with tributylamine (TBA) as the ion-pairing reagent and methanol as the eluent. Basic pH (9.4) of the mobile phase was critical to achieve sufficient retention and sharp metabolite elution at a low concentration of TBA (1.7 mM). Limits of detection were determined for 54 standards with an LTQ-Orbitrap mass spectrometer to be in the upper attomole to low femtomole range for key metabolites such as nucleotides, phosphorylated sugars, organic acids, and coenzyme A thioesters in solvent as well as in a complex matrix. To further evaluate the method, metabolome analysis was performed injecting different amounts of biomass of the methylotroph model organism Methylobacterium extorquens AM1. A (12)C/(13)C labeling strategy was implemented to improve metabolite identification. Analysis of three biological replicates performed with 1.5 ng of cell dry weight biomass equivalents resulted in the identification of 20 ± 4 metabolites, and analysis of 150 ng allowed identifying 157 ± 5 metabolites from a large spectrum of metabolite classes.


Journal of Biological Chemistry | 2009

Small RNA-dependent expression of secondary metabolism is controlled by Krebs cycle function in Pseudomonas fluorescens

Kasumi Takeuchi; Patrick Kiefer; Cornelia Reimmann; Christoph Keel; Christophe Dubuis; Joëlle Rolli; Julia A. Vorholt; Dieter Haas

Pseudomonas fluorescens CHA0, an antagonist of phytopathogenic fungi in the rhizosphere of crop plants, elaborates and excretes several secondary metabolites with antibiotic properties. Their synthesis depends on three small RNAs (RsmX, RsmY, and RsmZ), whose expression is positively controlled by the GacS-GacA two-component system at high cell population densities. To find regulatory links between primary and secondary metabolism in P. fluorescens and in the related species Pseudomonas aeruginosa, we searched for null mutations that affected central carbon metabolism as well as the expression of rsmY-gfp and rsmZ-gfp reporter constructs but without slowing down the growth rate in rich media. Mutation in the pycAB genes (for pyruvate carboxylase) led to down-regulation of rsmXYZ and secondary metabolism, whereas mutation in fumA (for a fumarase isoenzyme) resulted in up-regulation of the three small RNAs and secondary metabolism in the absence of detectable nutrient limitation. These effects required the GacS sensor kinase but not the accessory sensors RetS and LadS. An analysis of intracellular metabolites in P. fluorescens revealed a strong positive correlation between small RNA expression and the pools of 2-oxoglutarate, succinate, and fumarate. We conclude that Krebs cycle intermediates (already known to control GacA-dependent virulence factors in P. aeruginosa) exert a critical trigger function in secondary metabolism via the expression of GacA-dependent small RNAs.

Collaboration


Dive into the Patrick Kiefer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge