Patrick Koczera
RWTH Aachen University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Patrick Koczera.
The Journal of Nuclear Medicine | 2012
Fabian Kiessling; Stanley Fokong; Patrick Koczera; Wiltrud Lederle; Twan Lammers
Ultrasound imaging is clinically established for routine screening examinations of breast, abdomen, neck, and other soft tissues, as well as for therapy monitoring. Microbubbles as vascular contrast agents improve the detection and characterization of cancerous lesions, inflammatory processes, and cardiovascular pathologies. Taking advantage of the excellent sensitivity and specificity of ultrasound for microbubble detection, molecular imaging can be realized by binding antibodies, peptides, and other targeting moieties to microbubble surfaces. Molecular microbubbles directed against various targets such as vascular endothelial growth factor receptor-2, vascular cell adhesion molecule 1, intercellular adhesion molecule 1, selectins, and integrins were developed and were shown in preclinical studies to be able to selectively bind to tumor blood vessels and atherosclerotic plaques. Currently, the first microbubble formulations targeted to angiogenic vessels in prostate cancers are being evaluated clinically. However, microbubbles can be used for more than diagnosis: disintegrating microbubbles emit acoustic forces that are strong enough to induce thrombolysis, and they can also be used for facilitating drug and gene delivery across biologic barriers. This review on the use of microbubbles for ultrasound-based molecular imaging, therapy, and theranostics addresses innovative concepts and identifies areas in which clinical translation is foreseeable in the near future.
Journal of Controlled Release | 2012
Stanley Fokong; Benjamin Theek; Zhuojun Wu; Patrick Koczera; Lia Appold; Samuel Jorge; Ute Resch-Genger; Marc A. M. J. van Zandvoort; Gert Storm; Fabian Kiessling; Twan Lammers
Microbubbles (MB) are routinely used contrast agents for functional and molecular ultrasound (US) imaging. In addition, they have been attracting more and more attention for drug delivery purposes, enabling e.g. US-mediated drug delivery across biological barriers and US-induced triggered drug release from the MB shell. The vast majority of efforts in this regard have thus far focused on phospholipid-based soft-shell MB, which are suboptimal for stably incorporating large amounts of drug molecules because of their relatively thin shell. Using poly(butyl cyanoacrylate) (PBCA)-based hard-shell MB, we show here that both hydrophilic (Rhodamine-B) and hydrophobic (Coumarin-6) model drugs can be efficiently and stably entrapped within the ~50 nm shell of PBCA MB. In addition, we demonstrate that model drug loading does not negatively affect the acoustic properties of the MB, and that functionalizing the surface of fluorophore-loaded MB with anti-VEGFR2 antibodies enables image-guided and targeted model drug delivery to tumor blood vessels. Finally, we show both in vitro and in vivo that disintegrating VEGFR2-targeted MB with high-mechanical index US pulses leads to high levels of model drug release. Consequently, these findings indicate that polymer-based MB are highly suitable systems for image-guided, targeted and triggered drug delivery to tumors and tumor blood vessels.
ACS Nano | 2013
Sijumon Kunjachan; Felix Gremse; Benjamin Theek; Patrick Koczera; Robert Pola; Michal Pechar; Tomáš Etrych; Karel Ulbrich; Gert Storm; Fabian Kiessling; Twan Lammers
Nanomedicines are sub-micrometer-sized carrier materials designed to improve the biodistribution of i.v. administered (chemo-) therapeutic agents. In recent years, ever more efforts in the nanomedicine field have employed optical imaging (OI) techniques to monitor biodistribution and target site accumulation. Thus far, however, the longitudinal assessment of nanomedicine biodistribution using OI has been impossible, due to limited light penetration (in the case of 2D fluorescence reflectance imaging; FRI) and to the inability to accurately allocate fluorescent signals to nonsuperficial organs (in the case of 3D fluorescence molecular tomography; FMT). Using a combination of high-resolution microcomputed tomography (μCT) and FMT, we have here set out to establish a hybrid imaging protocol for noninvasively visualizing and quantifying the accumulation of near-infrared fluorophore-labeled nanomedicines in tissues other than superficial tumors. To this end, HPMA-based polymeric drug carriers were labeled with Dy750, their biodistribution and tumor accumulation were analyzed using FMT, and the resulting data sets were fused with anatomical μCT data sets in which several different physiologically relevant organs were presegmented. The robustness of 3D organ segmentation was validated, and the results obtained using 3D CT-FMT were compared to those obtained upon standard 3D FMT and 2D FRI. Our findings convincingly demonstrate that combining anatomical μCT with molecular FMT facilitates the noninvasive assessment of nanomedicine biodistribution.
Advanced Functional Materials | 2015
Twan Lammers; Patrick Koczera; Stanley Fokong; Felix Gremse; Josef Ehling; Michael Vogt; Andrij Pich; Gerrit Storm; Marc A. M. J. van Zandvoort; Fabian Kiessling
Efficient and safe drug delivery across the blood-brain barrier (BBB) remains to be one of the major challenges of biomedical and (nano-) pharmaceutical research. Here, we show that poly(butyl cyanoacrylate)-based microbubbles (MB), carrying ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles within their shell, can be used to mediate and monitor BBB permeation. Upon exposure to transcranial ultrasound pulses, USPIO-MB are destroyed, resulting in acoustic forces inducing vessel permeability. At the same time, USPIO are released from the MB shell, they extravasate across the permeabilized BBB and they accumulate in extravascular brain tissue, thereby providing non-invasive R2*-based magnetic resonance imaging information on the extent of BBB opening. Quantitative changes in R2* relaxometry were in good agreement with 2D and 3D microscopy results on the extravascular deposition of the macromolecular model drug FITC-dextran into the brain. Such theranostic materials and methods are considered to be useful for mediating and monitoring drug delivery across the BBB, and for enabling safe and efficient treatment of CNS disorders.
International Journal of Molecular Sciences | 2016
Patrick Koczera; Lukas Martin; Gernot Marx; Tobias Schuerholz
In humans, the ribonuclease A (RNase A) superfamily contains eight different members that have RNase activities, and all of these members are encoded on chromosome 14. The proteins are secreted by a large variety of different tissues and cells; however, a comprehensive understanding of these proteins’ physiological roles is lacking. Different biological effects can be attributed to each protein, including antiviral, antibacterial and antifungal activities as well as cytotoxic effects against host cells and parasites. Different immunomodulatory effects have also been demonstrated. This review summarizes the available data on the human RNase A superfamily and illustrates the significant role of the eight canonical RNases in inflammation and the host defence system against infections.
BioMed Research International | 2016
Lukas Martin; Patrick Koczera; Elisabeth Zechendorf; Tobias Schuerholz
Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection. The endothelial glycocalyx is one of the earliest sites involved during sepsis. This fragile layer is a complex network of cell-bound proteoglycans, glycosaminoglycan side chains, and sialoproteins lining the luminal side of endothelial cells with a thickness of about 1 to 3 μm. Sepsis-associated alterations of its structure affect endothelial permeability and result in the liberation of endogenous damage-associated molecular patterns (DAMPs). Once liberated in the circulatory system, DAMPs trigger the devastating consequences of the proinflammatory cascades in sepsis and septic shock. In this way, the injury to the glycocalyx with the consecutive release of DAMPs contributes to a number of specific clinical effects of sepsis, including acute kidney injury, respiratory failure, and septic cardiomyopathy. Moreover, the extent of glycocalyx degradation serves as a marker of endothelial dysfunction and sepsis severity. In this review, we highlight the crucial role of the glycocalyx in sepsis as a diagnostic tool and discuss the potential of members of the endothelial glycocalyx serving as hopeful therapeutic targets in sepsis-associated multiple organ failures.
PLOS ONE | 2015
Lukas Martin; Rebecca De Santis; Patrick Koczera; Nadine Simons; Hajo Haase; Lena Heinbockel; Klaus Brandenburg; Gernot Marx; Tobias Schuerholz
Heparanase is an endo-β-glucuronidase that cleaves heparan sulfate side chains from their proteoglycans. Thereby, heparanase liberates highly potent circulating heparan sulfate-fragments (HS-fragments) and triggers the fatal and excessive inflammatory response in sepsis. As a potential anti-inflammatory agent for sepsis therapy, peptide 19–2.5 belongs to the class of synthetic anti-lipopolysaccharide peptides; however, its activity is not restricted to Gram-negative bacterial infection. We hypothesized that peptide 19–2.5 interacts with heparanase and/or HS, thereby reducing the levels of circulating HS-fragments in murine and human sepsis. Our data indicate that the treatment of septic mice with peptide 19–2.5 compared to untreated control animals lowers levels of plasma heparanase and circulating HS-fragments and reduces heparanase activity. Additionally, mRNA levels of heparanase in heart, liver, lung, kidney and spleen are downregulated in septic mice treated with peptide 19–2.5 compared to untreated control animals. In humans, plasma heparanase level and activity are elevated in septic shock. The ex vivo addition of peptide 19–2.5 to plasma of septic shock patients decreases heparanase activity but not heparanase level. Isothermal titration calorimetry revealed a strong exothermic reaction between peptide 19–2.5 and heparanase and HS-fragments. However, a saturation character has been identified only in the peptide 19–2.5 and HS interaction. In conclusion, the findings of our current study indicate that peptide 19–2.5 interacts with heparanase, which is elevated in murine and human sepsis and consecutively attenuates the generation of circulating HS-fragments in systemic inflammation. Thus, peptide 19–2.5 seems to be a potential anti-inflammatory agent in sepsis.
Drug Delivery and Translational Research | 2012
Patrick Koczera; Zhuojun Wu; Stanley Fokong; Benjamin Theek; Lia Appold; S. Jorge; Diana Möckel; Zhe Liu; Adelina Curaj; Gerrit Storm; M. van Zandvoort; Fabian Kiessling; Twan Lammers
Microbubbles (MB) are routinely used as contrast agents for functional and molecular ultrasound (US) imaging. For molecular US imaging, MB are functionalized with antibodies or peptides, in order to visualize receptor expression by angiogenic or inflamed endothelium. In general, initial in vitro binding studies with targeted MB are performed using phase contrast microscopy. Difficulties in the identification of MB in standard phase contrast microscopy, however, generally result in high variability, high observer dependency, and low reproducibility. To overcome these shortcomings, we here describe a simple post-loading strategy for labeling polymer-based MB with fluorophores, and we show that the use of rhodamine-loaded MB in combination with fluorescence microscopy substantially reduces the variability and the observer dependency of in vitro binding studies. In addition, we demonstrate that rhodamine-loaded MB can also be used for in vivo and ex vivo experimental setups, e.g., for analyzing MB binding to inflamed carotids using two-photon laser scanning microscopy, and for validating the binding of VEGFR2-targeted MB to tumor endothelium. These findings demonstrate that fluorescently labeled MB substantially facilitate translational molecular US studies, and they suggest that a similar synthetic strategy can be exploited for preparing drug-loaded MB, to enable image-guided, targeted, and triggered drug delivery to tumors and to sites of inflammation.
Journal of Controlled Release | 2017
Patrick Koczera; Lia Appold; Yang Shi; Mengjiao Liu; Anshuman Dasgupta; Vertika Pathak; Tarun Ojha; Stanley Fokong; Zhuojun Wu; Marc A. M. J. van Zandvoort; Olga Iranzo; Alexander J. C. Kuehne; Andrij Pich; Fabian Kiessling; Twan Lammers
ABSTRACT Microbubbles (MB) are routinely used as contrast agents for ultrasound (US) imaging. We describe different types of targeted and drug‐loaded poly(n‐butyl cyanoacrylate) (PBCA) MB, and demonstrate their suitability for multiple biomedical applications, including molecular US imaging and US‐mediated drug delivery. Molecular imaging of angiogenic tumor blood vessels and inflamed atherosclerotic endothelium is performed by modifying the surface of PBCA MB with peptides and antibodies recognizing E‐selectin and VCAM‐1. Stable and inertial cavitation of PBCA MB enables sonoporation and permeabilization of blood vessels in tumors and in the brain, which can be employed for direct and indirect drug delivery. Direct drug delivery is based on US‐induced release of (model) drug molecules from the MB shell. Indirect drug delivery refers to US‐ and MB‐mediated enhancement of extravasation and penetration of co‐administered drugs and drug delivery systems. These findings are in line with recently reported pioneering proof‐of‐principle studies showing the usefulness of (phospholipid) MB for molecular US imaging and sonoporation‐enhanced drug delivery in patients. They aim to exemplify the potential and the broad applicability of combining MB with US to improve disease diagnosis and therapy. Graphical abstract Figure. No caption available.
International Journal of Molecular Sciences | 2016
Lukas Martin; Patrick Koczera; Nadine Simons; Elisabeth Zechendorf; Janine Hoeger; Gernot Marx; Tobias Schuerholz
Sepsis is the most common cause of death in intensive care units and associated with widespread activation of host innate immunity responses. Ribonucleases (RNases) are important components of the innate immune system, however the role of RNases in sepsis has not been investigated. We evaluated serum levels of RNase 1, 3 and 7 in 20 surgical sepsis patients (Sepsis), nine surgical patients (Surgery) and 10 healthy controls (Healthy). RNase 1 and 3 were elevated in Sepsis compared to Surgery (2.2- and 3.1-fold, respectively; both p < 0.0001) or compared to Healthy (3.0- and 15.5-fold, respectively; both p < 0.0001). RNase 1 showed a high predictive value for the development of more than two organ failures (AUC 0.82, p = 0.01). Patients with renal dysfunction revealed higher RNase 1 levels than without renal dysfunction (p = 0.03). RNase 1 and 3 were higher in respiratory failure than without respiratory failure (p < 0.0001 and p = 0.02, respectively). RNase 7 was not detected in Healthy patients and only in two patients of Surgery, however RNase 7 was detected in 10 of 20 Sepsis patients. RNase 7 was higher in renal or metabolic failure than without failure (p = 0.04 and p = 0.02, respectively). In conclusion, RNase 1, 3 and 7 are secreted into serum under conditions with tissue injury, such as major surgery or sepsis. Thus, RNases might serve as laboratory parameters to diagnose and monitor organ failure in sepsis.