Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrick L. Sheets is active.

Publication


Featured researches published by Patrick L. Sheets.


Nature Neuroscience | 2010

Sublayer-specific microcircuits of corticospinal and corticostriatal neurons in motor cortex

Charles T. Anderson; Patrick L. Sheets; Taro Kiritani; Gordon M. G. Shepherd

The mammalian motor system is organized around distinct subcortical subsystems, suggesting that the intracortical circuits immediately upstream of spinal cord and basal ganglia might be functionally differentiated as well. We found that the main excitatory pathway in mouse motor cortex, layer 2/3→5, is fractionated into distinct pathways targeting corticospinal and corticostriatal neurons, which are involved in motor control. However, connections were selective for neurons in certain sublayers: corticospinal neurons in upper layer 5B and corticostriatal neurons in lower 5A. A simple structural combinatorial principle accounts for this highly specific functional circuit architecture: potential connectivity is established by neuronal sublayer positioning and actual connectivity in this framework is determined by long-range axonal projection targets. Thus, intracortical circuits of these pyramidal neurons are specified not only by their long-range axonal targets or their layer or sublayer positions, but by both, in specific combinations.


Journal of Pharmacology and Experimental Therapeutics | 2008

Differential Block of Sensory Neuronal Voltage-Gated Sodium Channels by Lacosamide [(2R)-2-(Acetylamino)-N-benzyl-3-methoxypropanamide], Lidocaine, and Carbamazepine

Patrick L. Sheets; Cara Heers; Thomas Stoehr; Theodore R. Cummins

Voltage-gated sodium channels play a critical role in excitability of nociceptors (pain-sensing neurons). Several different sodium channels are thought to be potential targets for pain therapeutics, including Nav1.7, which is highly expressed in nociceptors and plays crucial roles in human pain and hereditary painful neuropathies, Nav1.3, which is up-regulated in sensory neurons following chronic inflammation and nerve injury, and Nav1.8, which has been implicated in inflammatory and neuropathic pain mechanisms. We compared the effects of lacosamide [(2R)-2-(acetylamino)-N-benzyl-3-methoxypropanamide], a new pain therapeutic, with those of lidocaine and carbamazepine on recombinant Nav1.7 and Nav1.3 currents and neuronal tetrodotoxin-resistant (Nav1.8-type) sodium currents using whole-cell patch-clamp electrophysiology. Lacosamide is able to substantially reduce all three current types. However, in contrast to lidocaine and carbamazepine, 1 mM lacosamide did not alter steady-state fast inactivation. Inhibition by lacosamide exhibited substantially slower kinetics, consistent with the proposal that lacosamide interacts with slow-inactivated sodium channels. The estimated IC50 values for inhibition by lacosamide of Nav1.7-, Nav1.3-, and Nav1.8-type channels following prolonged inactivation were 182, 415, and 16 μM, respectively. Nav1.7-, Nav1.3-, and Nav1.8-type channels in the resting state were 221-, 123-, and 257-fold less sensitive, respectively, to lacosamide than inactivated channels. Interestingly, the ratios of resting to inactivated IC50s for carbamazepine and lidocaine were much smaller (ranging from 3 to 16). This suggests that lacosamide should be more effective than carbamazepine and lidocaine at selectively blocking the electrical activity of neurons that are chronically depolarized compared with those at more normal resting potentials.


Journal of Neurophysiology | 2011

Corticospinal-specific HCN expression in mouse motor cortex: Ih-dependent synaptic integration as a candidate microcircuit mechanism involved in motor control

Patrick L. Sheets; Benjamin A. Suter; Taro Kiritani; C. Savio Chan; D. James Surmeier; Gordon M. Shepherd

Motor cortex is a key brain center involved in motor control in rodents and other mammals, but specific intracortical mechanisms at the microcircuit level are largely unknown. Neuronal expression of hyperpolarization-activated current (I(h)) is cell class specific throughout the nervous system, but in neocortex, where pyramidal neurons are classified in various ways, a systematic pattern of expression has not been identified. We tested whether I(h) is differentially expressed among projection classes of pyramidal neurons in mouse motor cortex. I(h) expression was high in corticospinal neurons and low in corticostriatal and corticocortical neurons, a pattern mirrored by mRNA levels for HCN1 and Trip8b subunits. Optical mapping experiments showed that I(h) attenuated glutamatergic responses evoked across the apical and basal dendritic arbors of corticospinal but not corticostriatal neurons. Due to I(h), corticospinal neurons resonated, with a broad peak at ∼4 Hz, and were selectively modulated by α-adrenergic stimulation. I(h) reduced the summation of short trains of artificial excitatory postsynaptic potentials (EPSPs) injected at the soma, and similar effects were observed for short trains of actual EPSPs evoked from layer 2/3 neurons. I(h) narrowed the coincidence detection window for EPSPs arriving from separate layer 2/3 inputs, indicating that the dampening effect of I(h) extended to spatially disperse inputs. To test the role of corticospinal I(h) in transforming EPSPs into action potentials, we transfected layer 2/3 pyramidal neurons with channelrhodopsin-2 and used rapid photostimulation across multiple sites to synaptically drive spiking activity in postsynaptic neurons. Blocking I(h) increased layer 2/3-driven spiking in corticospinal but not corticostriatal neurons. Our results imply that I(h)-dependent synaptic integration in corticospinal neurons constitutes an intracortical control mechanism, regulating the efficacy with which local activity in motor cortex is transferred to downstream circuits in the spinal cord. We speculate that modulation of I(h) in corticospinal neurons could provide a microcircuit-level mechanism involved in translating action planning into action execution.


Frontiers in Neural Circuits | 2008

Local-circuit phenotypes of layer 5 neurons in motor-frontal cortex of YFP-H mice

Jianing Yu; Charles T. Anderson; Taro Kiritani; Patrick L. Sheets; David L. Wokosin; Lydia Wood; Gordon M. G. Shepherd

Layer 5 pyramidal neurons comprise an important but heterogeneous group of cortical projection neurons. In motor-frontal cortex, these neurons are centrally involved in the cortical control of movement. Recent studies indicate that local excitatory networks in mouse motor-frontal cortex are dominated by descending pathways from layer 2/3 to 5. However, those pathways were identified in experiments involving unlabeled neurons in wild type mice. Here, to explore the possibility of class-specific connectivity in this descending pathway, we mapped the local sources of excitatory synaptic input to a genetically labeled population of cortical neurons: YFP-positive layer 5 neurons of YFP-H mice. We found, first, that in motor cortex, YFP-positive neurons were distributed in a double blade, consistent with the idea of layer 5B having greater thickness in frontal neocortex. Second, whereas unlabeled neurons in upper layer 5 received their strongest inputs from layer 2, YFP-positive neurons in the upper blade received prominent layer 3 inputs. Third, YFP-positive neurons exhibited distinct electrophysiological properties, including low spike frequency adaptation, as reported previously. Our results with this genetically labeled neuronal population indicate the presence of distinct local-circuit phenotypes among layer 5 pyramidal neurons in mouse motor-frontal cortex, and present a paradigm for investigating local circuit organization in other genetically labeled populations of cortical neurons.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Tlx3 exerts context-dependent transcriptional regulation and promotes neuronal differentiation from embryonic stem cells

Takako Kondo; Patrick L. Sheets; David A. Zopf; Heather L. Aloor; Theodore R. Cummins; Rebecca J. Chan; Eri Hashino

The T cell leukemia 3 (Tlx3) gene has been implicated in specification of glutamatergic sensory neurons in the spinal cord. In cranial sensory ganglia, Tlx3 is highly expressed in differentiating neurons during early embryogenesis. To study a role of Tlx3 during neural differentiation, mouse embryonic stem (ES) cells were transfected with a Tlx3 expression vector. ES cells stably expressing Tlx3 were grown in the presence or absence of a neural induction medium. In undifferentiated ES cells, there was no significant difference in gene expression in the presence or absence of Tlx3, even after ES cells were cultured for an extensive time period. In contrast, expression levels of Mash1, Ngn1, and NeuroD were significantly higher in Tlx3-expressing cells after neural induction for 4 days compared with those in cells expressing the control vector. At 7 days after neural induction, whereas expression of the proneural genes was down-regulated, VGLUT2, GluR2, and GluR4 were significantly increased in ES cell-derived neurons expressing Tlx3. The sequential and coordinated expression of the proneural and neuronal subtype-specific genes identifies Tlx3 as a selector gene in ES cells undergoing neural differentiation. In addition, the differential effects of Tlx3 overexpression in undifferentiated ES cells compared with ES cell-derived neurons suggest that Tlx3 exerts context-dependent transcriptional signals on its downstream target genes. The context-dependent function of Tlx3 as a selector gene may be used to establish a novel strategy to conditionally generate excitatory glutamatergic neurons from ES cells to cure various types of neurodegenerative disorders.


The Journal of Neuroscience | 2013

eGFP Expression under UCHL1 Promoter Genetically Labels Corticospinal Motor Neurons and a Subpopulation of Degeneration-Resistant Spinal Motor Neurons in an ALS Mouse Model

Marina V. Yasvoina; Barış Genç; Javier H. Jara; Patrick L. Sheets; Katharina A. Quinlan; Ana Milosevic; Gordon M. G. Shepherd; Charles J. Heckman; P. Hande Özdinler

Understanding mechanisms that lead to selective motor neuron degeneration requires visualization and cellular identification of vulnerable neurons. Here we report generation and characterization of UCHL1-eGFP and hSOD1G93A-UeGFP mice, novel reporter lines for cortical and spinal motor neurons. Corticospinal motor neurons (CSMN) and a subset of spinal motor neurons (SMN) are genetically labeled in UCHL1-eGFP mice, which express eGFP under the UCHL1 promoter. eGFP expression is stable and continues through P800 in vivo. Retrograde labeling, molecular marker expression, electrophysiological analysis, and cortical circuit mapping confirmed CSMN identity of eGFP+ neurons in the motor cortex. Anatomy, molecular marker expression, and electrophysiological analysis revealed that the eGFP expression is restricted to a subset of small-size SMN that are slow-twitch α and γ motor neurons. Crossbreeding of UCHL1-eGFP and hSOD1G93A lines generated hSOD1G93A-UeGFP mice, which displayed the disease phenotype observed in a hSOD1G93A mouse model of ALS. eGFP+ SMN showed resistance to degeneration in hSOD1G93A-UeGFP mice, and their slow-twitch α and γ motor neuron identity was confirmed. In contrast, eGFP+ neurons in the motor cortex of hSOD1G93A-UeGFP mice recapitulated previously reported progressive CSMN loss and apical dendrite degeneration. Our findings using these two novel reporter lines revealed accumulation of autophagosomes along the apical dendrites of vulnerable CSMN at P60, early symptomatic stage, suggesting autophagy as a potential intrinsic mechanism for CSMN apical dendrite degeneration.


British Journal of Pharmacology | 2011

Lidocaine reduces the transition to slow inactivation in Nav1.7 voltage-gated sodium channels

Patrick L. Sheets; Brian W. Jarecki; Theodore R. Cummins

BACKGROUND AND PURPOSE The primary use of local anaesthetics is to prevent or relieve pain by reversibly preventing action potential propagation through the inhibition of voltage‐gated sodium channels. The tetrodotoxin‐sensitive voltage‐gated sodium channel subtype Nav1.7, abundantly expressed in pain‐sensing neurons, plays a crucial role in perception and transmission of painful stimuli and in inherited chronic pain syndromes. Understanding the interaction of lidocaine with Nav1.7 channels could provide valuable insight into the drugs action in alleviating pain in distinct patient populations. The aim of this study was to determine how lidocaine interacts with multiple inactivated conformations of Nav1.7 channels.


Channels | 2009

Alternative splicing of Na V 1.7 exon 5 increases the impact of the painful pepD mutant channel I1461T

Brian W. Jarecki; Patrick L. Sheets; Yucheng Xiao; James O. Jackson; Theodore R. Cummins

Alternative splicing is known to alter pharmacological sensitivities, kinetics, channel distribution under pathological conditions, and developmental regulation of VGSCs. Mutations that alter channel properties in NaV1.7 have been genetically implicated in patients with bouts of extreme pain classified as inherited erythromelalgia (IEM) or paroxysmal extreme pain disorder (PEPD). Furthermore, patients with IEM or PEPD report differential age onsets. A recent study reported that alternative splicing of NaV1.7 exon 5 affects ramp current properties. Since IEM and PEPD mutations also alter NaV1.7 ramp current properties we speculated that alternative splicing might impact the functional consequences of IEM or PEPD mutations. We compared the effects alternative splicing has on the biophysical properties of NaV1.7 wild-type, IEM (I136V), and PEPD (I1461T) channels. Our major findings demonstrate that although the 5A splice variant of the IEM channel had no functional impact, the 5A splice variant of the PEPD channel significantly hyperpolarized the activation curve, slowed deactivation and closed-state inactivation, shifted the ramp current activation to more hyperpolarized potentials, and increased ramp current amplitude. We hypothesize a D1/S3-S4 charged residue difference between the 5N (Asn) and the 5A (Asp) variants within the coding region of exon 5 may contribute to shifts in channel activation and deactivation. Taken together, the additive effects observed on ramp currents from exon 5 splicing and the PEPD mutation (I1461T) are likely to impact the disease phenotype and may offer insight into how alternative splicing may affect specific intramolecular interactions critical for voltage-dependent gating.


Journal of Neurophysiology | 2006

Inhibition of Nav1.7 and Nav1.4 Sodium Channels by Trifluoperazine Involves the Local Anesthetic Receptor

Patrick L. Sheets; Peter Gerner; Chi-Fei Wang; Sho-Ya Wang; Ging Kuo Wang; Theodore R. Cummins


Neuropsychopharmacology | 2011

Cortical Circuits for Motor Control

Patrick L. Sheets; Gordon M. G. Shepherd

Collaboration


Dive into the Patrick L. Sheets's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian W. Jarecki

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge