Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrick L. Sinn is active.

Publication


Featured researches published by Patrick L. Sinn.


Nature | 2011

Adherens junction protein nectin-4 is the epithelial receptor for measles virus

Michael D. Mühlebach; Mathieu Mateo; Patrick L. Sinn; Steffen Prüfer; Katharina M. Uhlig; Vincent H. J. Leonard; Chanakha K. Navaratnarajah; Marie Frenzke; Xiao X. Wong; Bevan Sawatsky; Paul B. McCray; Klaus Cichutek; Veronika von Messling; Marc Lopez; Roberto Cattaneo

Measles virus is an aerosol-transmitted virus that affects more than 10 million children each year and accounts for approximately 120,000 deaths. Although it was long believed to replicate in the respiratory epithelium before disseminating, it was recently shown to infect initially macrophages and dendritic cells of the airways using signalling lymphocytic activation molecule family member 1 (SLAMF1; also called CD150) as a receptor. These cells then cross the respiratory epithelium and transport the infection to lymphatic organs where measles virus replicates vigorously. How and where the virus crosses back into the airways has remained unknown. On the basis of functional analyses of surface proteins preferentially expressed on virus-permissive human epithelial cell lines, here we identify nectin-4 (ref. 8; also called poliovirus-receptor-like-4 (PVRL4)) as a candidate host exit receptor. This adherens junction protein of the immunoglobulin superfamily interacts with the viral attachment protein with high affinity through its membrane-distal domain. Nectin-4 sustains measles virus entry and non-cytopathic lateral spread in well-differentiated primary human airway epithelial sheets infected basolaterally. It is downregulated in infected epithelial cells, including those of macaque tracheae. Although other viruses use receptors to enter hosts or transit through their epithelial barriers, we suggest that measles virus targets nectin-4 to emerge in the airways. Nectin-4 is a cellular marker of several types of cancer, which has implications for ongoing measles-virus-based clinical trials of oncolysis.


Proceedings of the National Academy of Sciences of the United States of America | 2011

T-cell immunoglobulin and mucin domain 1 (TIM-1) is a receptor for Zaire Ebolavirus and Lake Victoria Marburgvirus

Andrew S. Kondratowicz; Nicholas J. Lennemann; Patrick L. Sinn; Robert A. Davey; Catherine L. Hunt; Sven Moller-Tank; David K. Meyerholz; Paul D. Rennert; Robert F. Mullins; Melinda A. Brindley; Lindsay M. Sandersfeld; Kathrina Quinn; Melodie L. Weller; Paul B. McCray; John A. Chiorini; Wendy Maury

The glycoproteins (GP) of enveloped viruses facilitate entry into the host cell by interacting with specific cellular receptors. Despite extensive study, a cellular receptor for the deadly filoviruses Ebolavirus and Marburgvirus has yet to be identified and characterized. Here, we show that T-cell Ig and mucin domain 1 (TIM-1) binds to the receptor binding domain of the Zaire Ebola virus (EBOV) glycoprotein, and ectopic TIM-1 expression in poorly permissive cells enhances EBOV infection by 10- to 30-fold. Conversely, reduction of cell-surface expression of TIM-1 by RNAi decreased infection of highly permissive Vero cells. TIM-1 expression within the human body is broader than previously appreciated, with expression on mucosal epithelia from the trachea, cornea, and conjunctiva—tissues believed to be important during in vivo transmission of filoviruses. Recognition that TIM-1 serves as a receptor for filoviruses on these mucosal epithelial surfaces provides a mechanistic understanding of routes of entry into the human body via inhalation of aerosol particles or hand-to-eye contact. ARD5, a monoclonal antibody against the IgV domain of TIM-1, blocked EBOV binding and infection, suggesting that antibodies or small molecules directed against this cellular receptor may provide effective filovirus antivirals.


Journal of Clinical Investigation | 2008

Measles virus blind to its epithelial cell receptor remains virulent in rhesus monkeys but cannot cross the airway epithelium and is not shed

Vincent H. J. Leonard; Patrick L. Sinn; Gregory Hodge; Tanner Miest; Patricia Devaux; Numan Oezguen; Werner Braun; Paul B. McCray; Michael B. McChesney; Roberto Cattaneo

The current model of measles virus (MV) pathogenesis implies that apical infection of airway epithelial cells precedes systemic spread. An alternative model suggests that primarily infected lymphatic cells carry MV to the basolateral surface of epithelial cells, supporting MV shedding into the airway lumen and contagion. This model predicts that a mutant MV, unable to enter cells through the unidentified epithelial cell receptor (EpR), would remain virulent but not be shed. To test this model, we identified residues of the MV attachment protein sustaining EpR-mediated cell fusion. These nonpolar or uncharged polar residues defined an area located near the binding site of the signaling lymphocytic activation molecule (SLAM), the receptor for MV on lymphatic cells. We then generated an EpR-blind virus maintaining SLAM-dependent cell entry and inoculated rhesus monkeys intranasally. Hosts infected with the selectively EpR-blind MV developed rash and anorexia while averaging slightly lower viremia than hosts infected with wild-type MV but did not shed virus in the airways. The mechanism restricting shedding was characterized using primary well-differentiated human airway epithelial cells. Wild-type MV infected columnar epithelial cells bearing tight junctions only when applied basolaterally, while the EpR-blind virus did not infect these cells. Thus, EpR is probably a basolateral protein, and infection of the airway epithelium is not essential for systemic spread and virulence of MV.


Optics Express | 2006

In vivo mouse studies with bioluminescence tomography.

Ge Wang; Wenxiang Cong; Kumar Durairaj; Xin Qian; Haiou Shen; Patrick L. Sinn; Eric A. Hoffman; Geoffrey McLennan; Michael D. Henry

Bioluminescence tomography (BLT) is a new molecular imaging mode, which is being actively developed to reveal molecular and cellular signatures as labeled by bioluminescent probes in a living small animal. This technology can help diagnose diseases, evaluate therapies, and facilitate drug development with mouse models. In this paper, we describe in vivo mouse experiments with BLT, and propose the reconstruction procedure of bioluminescent sources from optical data measured on the body surface of the mouse using a modality fusion approach. The results show the feasibility of our methodology for localization and quantification of the bioluminescent activities in vivo.


Journal of Virology | 2002

In Vivo Gene Transfer Using a Nonprimate Lentiviral Vector Pseudotyped with Ross River Virus Glycoproteins

Yubin Kang; Colleen S. Stein; Jason A. Heth; Patrick L. Sinn; Andrea K. Penisten; Patrick D. Staber; Kenneth L. Ratliff; Hong Shen; Carrie K. Barker; Inês Martins; C. Matthew Sharkey; David Avram Sanders; Paul B. McCray; Beverly L. Davidson

ABSTRACT Vectors derived from lentiviruses provide a promising gene delivery system. We examined the in vivo gene transfer efficiency and tissue or cell tropism of a feline immunodeficiency virus (FIV)-based lentiviral vector pseudotyped with the glycoproteins from Ross River Virus (RRV). RRV glycoproteins were efficiently incorporated into FIV virions, generating preparations of FIV vector, which after concentration attain titers up to 1.5 × 108 TU/ml. After systemic administration, RRV-pseudotyped FIV vectors (RRV/FIV) predominantly transduced the liver of recipient mice. Transduction efficiency in the liver with the RRV/FIV was ca. 20-fold higher than that achieved with the vesicular stomatitis virus G protein (VSV-G) pseudotype. Moreover, in comparison to VSV-G, the RRV glycoproteins caused less cytotoxicity, as determined from the levels of glutamic pyruvic transaminase and glutamic oxalacetic transaminase in serum. Although hepatocytes were the main liver cell type transduced, nonhepatocytes (mainly Kupffer cells) were also transduced. The percentages of the transduced nonhepatocytes were comparable between RRV and VSV-G pseudotypes and did not correlate with the production of antibody against the transgene product. After injection into brain, RRV/FIV preferentially transduced neuroglial cells (astrocytes and oligodendrocytes). In contrast to the VSV-G protein that targets predominantly neurons, <10% of the brain cells transduced with the RRV pseudotyped vector were neurons. Finally, the gene transfer efficiencies of RRV/FIV after direct application to skeletal muscle or airway were also examined and, although transgene-expressing cells were detected, their proportions were low. Our data support the utility of RRV glycoprotein-pseudotyped FIV lentiviral vectors for hepatocyte- and neuroglia-related disease applications.


Journal of Virology | 2003

Lentivirus Vectors Pseudotyped with Filoviral Envelope Glycoproteins Transduce Airway Epithelia from the Apical Surface Independently of Folate Receptor Alpha

Patrick L. Sinn; Melissa A. Hickey; Patrick D. Staber; Douglas E. Dylla; Scott A. Jeffers; Beverly L. Davidson; David Avram Sanders; Paul B. McCray

ABSTRACT The practical application of gene therapy as a treatment for cystic fibrosis is limited by poor gene transfer efficiency with vectors applied to the apical surface of airway epithelia. Recently, folate receptor alpha (FRα), a glycosylphosphatidylinositol-linked surface protein, was reported to be a cellular receptor for the filoviruses. We found that polarized human airway epithelia expressed abundant FRα on their apical surface. In an attempt to target these apical receptors, we pseudotyped feline immunodeficiency virus (FIV)-based vectors by using envelope glycoproteins (GPs) from the filoviruses Marburg virus and Ebola virus. Importantly, primary cultures of well-differentiated human airway epithelia were transduced when filovirus GP-pseudotyped FIV was applied to the apical surface. Furthermore, by deleting a heavily O-glycosylated extracellular domain of the Ebola GP, we improved the titer of concentrated vector severalfold. To investigate the folate receptor dependence of gene transfer with the filovirus pseudotypes, we compared gene transfer efficiency in immortalized airway epithelium cell lines and primary cultures. By utilizing phosphatidylinositol-specific phospholipase C (PI-PLC) treatment and FRα-blocking antibodies, we demonstrated FRα-dependent and -independent entry by filovirus glycoprotein-pseudotyped FIV-based vectors in airway epithelia. Of particular interest, entry independent of FRα was observed in primary cultures of human airway epithelia. Understanding viral vector binding and entry pathways is fundamental for developing cystic fibrosis gene therapy applications.


Journal of Virology | 2005

Persistent Gene Expression in Mouse Nasal Epithelia following Feline Immunodeficiency Virus-Based Vector Gene Transfer

Patrick L. Sinn; Erin R. Burnight; Melissa A. Hickey; Gary W. Blissard; Paul B. McCray

ABSTRACT Gene transfer development for treatment or prevention of cystic fibrosis lung disease has been limited by the inability of vectors to efficiently and persistently transduce airway epithelia. Influenza A is an enveloped virus with natural lung tropism; however, pseudotyping feline immunodeficiency virus (FIV)-based lentiviral vector with the hemagglutinin envelope protein proved unsuccessful. Conversely, pseudotyping FIV with the envelope protein from influenza D (Thogoto virus GP75) resulted in titers of 106 transducing units (TU)/ml and conferred apical entry into well-differentiated human airway epithelial cells. Baculovirus GP64 envelope glycoproteins share sequence identity with influenza D GP75 envelope glycoproteins. Pseudotyping FIV with GP64 from three species of baculovirus resulted in titers of 107 to 109 TU/ml. Of note, GP64 from Autographa californica multicapsid nucleopolyhedrovirus resulted in high-titer FIV preparations (∼109 TU/ml) and conferred apical entry into polarized primary cultures of human airway epithelia. Using a luciferase reporter gene and bioluminescence imaging, we observed persistent gene expression from in vivo gene transfer in the mouse nose with A. californica GP64-pseudotyped FIV (AcGP64-FIV). Longitudinal bioluminescence analysis documented persistent expression in nasal epithelia for ∼1 year without significant decline. According to histological analysis using a LacZ reporter gene, olfactory and respiratory epithelial cells were transduced. In addition, methylcellulose-formulated AcGP64-FIV transduced mouse nasal epithelia with much greater efficiency than similarly formulated vesicular stomatitis virus glycoprotein-pseudotyped FIV. These data suggest that AcGP64-FIV efficiently transduces and persistently expresses a transgene in nasal epithelia in the absence of agents that disrupt the cellular tight junction integrity.


Proceedings of the National Academy of Sciences of the United States of America | 2013

piggyBac transposase tools for genome engineering

Xianghong Li; Erin R. Burnight; Ashley L. Cooney; Nirav Malani; Troy Brady; Jeffry D. Sander; Janice M. Staber; Sarah J. Wheelan; J. Keith Joung; Paul B. McCray; Frederic D. Bushman; Patrick L. Sinn; Nancy L. Craig

Significance DNA transposons that translocate by excision from a donor site and insertion into a target site are often used for genome engineering by insertional mutagenesis and transgenesis. The piggyBac element is especially useful because it can excise precisely from an insertion site, restoring the site to its pretransposon state. Precise excision is particularly useful when transient transgenesis is needed, for example, in the transient introduction of transcription factors for induced pluripotent stem cell production. We have used mutagenesis to generate an Excision+ Integration− transposase that allows piggyBac excision without potentially harmful reintegration. These mutations likely lie in a target DNA-binding domain. The transposon piggyBac is being used increasingly for genetic studies. Here, we describe modified versions of piggyBac transposase that have potentially wide-ranging applications, such as reversible transgenesis and modified targeting of insertions. piggyBac is distinguished by its ability to excise precisely, restoring the donor site to its pretransposon state. This characteristic makes piggyBac useful for reversible transgenesis, a potentially valuable feature when generating induced pluripotent stem cells without permanent alterations to genomic sequence. To avoid further genome modification following piggyBac excision by reintegration, we generated an excision competent/integration defective (Exc+Int−) transposase. Our findings also suggest the position of a target DNA–transposase interaction. Another goal of genome engineering is to develop reagents that can guide transgenes to preferred genomic regions. Others have shown that piggyBac transposase can be active when fused to a heterologous DNA-binding domain. An Exc+Int− transposase, the intrinsic targeting of which is defective, might also be a useful intermediate in generating a transposase whose integration activity could be rescued and redirected by fusion to a site-specific DNA-binding domain. We show that fusion to two designed zinc finger proteins rescued the Int− phenotype. Successful guided transgene integration into genomic DNA would have broad applications to gene therapy and molecular genetics. Thus, an Exc+Int− transposase is a potentially useful reagent for genome engineering and provides insight into the mechanism of transposase–target DNA interaction.


Virology | 2011

Tyrosine kinase receptor Axl enhances entry of Zaire ebolavirus without direct interactions with the viral glycoprotein

Melinda A. Brindley; Catherine L. Hunt; Andrew S. Kondratowicz; Jill Bowman; Patrick L. Sinn; Paul B. McCray; Kathrina Quinn; Melodie L. Weller; John A. Chiorini; Wendy Maury

In a bioinformatics-based screen for cellular genes that enhance Zaire ebolavirus (ZEBOV) transduction, AXL mRNA expression strongly correlated with ZEBOV infection. A series of cell lines and primary cells were identified that require Axl for optimal ZEBOV entry. Using one of these cell lines, we identified ZEBOV entry events that are Axl-dependent. Interactions between ZEBOV-GP and the Axl ectodomain were not detected in immunoprecipitations and reduction of surface-expressed Axl by RNAi did not alter ZEBOV-GP binding, providing evidence that Axl does not serve as a receptor for the virus. However, RNAi knock down of Axl reduced ZEBOV pseudovirion internalization and α-Axl antisera inhibited pseudovirion fusion with cellular membranes. Consistent with the importance of Axl for ZEBOV transduction, Axl transiently co-localized on the surface of cells with ZEBOV virus particles and was internalized during virion transduction. In total, these findings indicate that endosomal uptake of filoviruses is facilitated by Axl.


Journal of Virology | 2008

Lentivirus Vector Can Be Readministered to Nasal Epithelia without Blocking Immune Responses

Patrick L. Sinn; Ariadna C. Arias; Kim A. Brogden; Paul B. McCray

ABSTRACT For many envisioned applications of lentivirus vectors as tools in respiratory biology and therapeutic gene delivery, the efficiency of gene transfer must be improved. We previously demonstrated stable, persistent (>11 months) in vivo expression following a single application of a feline immunodeficiency virus (FIV)-based lentivirus vector (GP64-FIV) to murine nasal epithelia. Here we investigate the efficacy of repeated administration of lentivirus vectors to the airways. Using quantitative bioluminescent imaging, we found that consecutive daily dosing achieved a linear increase in gene expression and greatly increased the number of epithelial cells targeted. Surprisingly, reporter gene expression also increased additively following each of seven doses of FIV delivered over consecutive weeks (1 dose/week), without the development of systemic or local neutralizing antibodies. This approach enhanced expression of both reporter and therapeutic transgenes. Transduction efficiency achieved following a single dose of FIV expressing mouse erythropoietin was insufficient to increase hematocrit, whereas seven consecutive daily doses significantly increased hematocrit. These unexpected results contrast strikingly with findings reported for adenovirus vectors. Prolonged gene expression has been observed in vivo following a single dose of virus vector; however, depending on the application, repeated administration of vector may be necessary to achieve stable, therapeutic gene expression.

Collaboration


Dive into the Patrick L. Sinn's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Beverly L. Davidson

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ashley L. Cooney

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Brajesh K. Singh

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge