Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrick Lagüe is active.

Publication


Featured researches published by Patrick Lagüe.


Proteins | 2009

Structural characterization of the tunnels of Mycobacterium tuberculosis truncated hemoglobin N from molecular dynamics simulations

Richard Daigle; Michel Guertin; Patrick Lagüe

The structure of oxygenated trHbN from Mycobacterium tuberculosis shows an extended heme distal hydrogen‐bond network that includes Tyr33(B10), Gln58(E11), and the bound O2. In addition, trHbN structure shows a network of hydrophobic cavities organized in two orthogonal branches. In the present work, the structure and the dynamics of oxygenated and deoxygenated trHbN in explicit water was investigated from 100 ns molecular dynamics (MD) simulations. Results show that, depending on the presence or the absence of a coordinated O2, the Tyr33(B10) and Gln58(E11) side chains adopt two different configurations in concert with hydrogen bond network rearrangement. In addition, our data indicate that Tyr33(B10) and Gln58(E11) control the dynamics of Phe62(E15). In deoxy‐trHbN, Phe62(E15) is restricted to one conformation. Upon O2 binding, the conformation of Gln58(E11) changes and residue Phe62(E15) fluctuates between two conformations. We also conducted a systematic study of trHbN tunnels by analyzing thousands of MD snapshots with CAVER. The results show that tunnel formation is the result of the dynamic reshaping of short‐lived hydrophobic cavities. The analyses indicate that the presence of these cavities is likely linked to the rigid structure of trHbN and also reveal two tunnels, EH and BE, that link the protein surface to the buried distal heme pocket and not present in the crystallographic structure. The cavities are sufficiently large to accomodate and store ligands. Tunnel dynamics in trHbN was found to be controlled by the side‐chain conformation of the Tyr33(B10), Gln58(E11), and Phe62(E15) residues. Importantly, in contrast to recently published works, our extensive systematic studies show that the presence or absence of a coordinated dioxygen does not control the opening of the long tunnel but rather the opening of the EH tunnel. In addition, the data lead to new and distinctly different conclusion on the impact of the Phe62(E15) residue on trHbN tunnels. We propose that the EH and the long tunnels are used for apolar ligands storage. The trajectories bring important new structural insights related to trHbN function and to ligand diffusion in proteins. Proteins 2009.


Molecular therapy. Nucleic acids | 2016

Efficient Restoration of the Dystrophin Gene Reading Frame and Protein Structure in DMD Myoblasts Using the CinDel Method.

Jean-Paul Iyombe-Engembe; Dominique L. Ouellet; Xavier Barbeau; Pierre Chapdelaine; Patrick Lagüe; Jacques P. Tremblay

The CRISPR/Cas9 system is a great revolution in biology. This technology allows the modification of genes in vitro and in vivo in a wide variety of living organisms. In most Duchenne muscular dystrophy (DMD) patients, expression of dystrophin (DYS) protein is disrupted because exon deletions result in a frame shift. We present here the CRISPR-induced deletion (CinDel), a new promising genome-editing technology to correct the DMD gene. This strategy is based on the use of two gRNAs targeting specifically exons that precede and follow the patient deletion in the DMD gene. This pair of gRNAs induced a precise large additional deletion leading to fusion of the targeted exons. Using an adequate pair of gRNAs, the deletion of parts of these exons and the intron separating them restored the DMD reading frame in 62% of the hybrid exons in vitro in DMD myoblasts and in vivo in electroporated hDMD/mdx mice. Moreover, adequate pairs of gRNAs also restored the normal spectrin-like repeat of the dystrophin rod domain; such restoration is not obtained by exon skipping or deletion of complete exons. The expression of an internally deleted DYS protein was detected following the formation of myotubes by the unselected, treated DMD myoblasts. Given that CinDel induces permanent reparation of the DMD gene, this treatment would not have to be repeated as it is the case for exon skipping induced by oligonucleotides.


Biophysical Journal | 2010

TEM-1 Backbone Dynamics—Insights from Combined Molecular Dynamics and Nuclear Magnetic Resonance

Olivier Fisette; Sébastien Morin; Pierre-Yves Savard; Patrick Lagüe; Stéphane M. Gagné

Dynamic properties of class A beta-lactamase TEM-1 are investigated from molecular dynamics (MD) simulations. Comparison of MD-derived order parameters with those obtained from model-free analysis of nuclear magnetic resonance (NMR) relaxation data shows high agreement for N-H moieties within alpha- and beta-secondary structures, but significant deviation for those in loops. This was expected, because motions slower than the protein global tumbling often take place in loop regions. As previously shown using NMR, TEM-1 is a highly ordered protein. Motions are observed within the Omega loop that could, upon substrate binding, stabilize E166 in a catalytically efficient position as the cavity between the protein core and the Omega loop is partially filled. The rigidity of active site residues is consistent with the enzyme high turnover number. MD data are also shown to be useful during the model selection step of model-free analysis: local N-H motions observed over the course of the trajectories help assess whether a peptide plan undergoes low or high amplitude motions on one or more timescales. This joint use of MD and NMR provides a better description of protein dynamics than would be possible using either technique alone.


Journal of Biological Chemistry | 2008

Ligand Binding to Truncated Hemoglobin N from Mycobacterium tuberculosis Is Strongly Modulated by the Interplay between the Distal Heme Pocket Residues and Internal Water

Yannick Ouellet; Richard Daigle; Patrick Lagüe; David Dantsker; Mario Milani; Martino Bolognesi; Joel M. Friedman; Michel Guertin

The survival of Mycobacterium tuberculosis requires detoxification of host ·NO. Oxygenated Mycobacterium tuberculosis truncated hemoglobin N catalyzes the rapid oxidation of nitric oxide to innocuous nitrate with a second-order rate constant (\batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(k_{\mathrm{NOD}}^{{^\prime}}\) \end{document} ≈ 745 × 106 m-1·s-1), which is ∼15-fold faster than the reaction of horse heart myoglobin. We ask what aspects of structure and/or dynamics give rise to this enhanced reactivity. A first step is to expose what controls ligand/substrate binding to the heme. We present evidence that the main barrier to ligand binding to deoxy-truncated hemoglobin N (deoxy-trHbN) is the displacement of a distal cavity water molecule, which is mainly stabilized by residue Tyr(B10) but not coordinated to the heme iron. As observed in the Tyr(B10)/Gln(E11) apolar mutants, once this kinetic barrier is lowered, CO and O2 binding is very rapid with rates approaching 1-2 × 109 m-1·s-1. These large values almost certainly represent the upper limit for ligand binding to a heme protein and also indicate that the iron atom in trHbN is highly reactive. Kinetic measurements on the photoproduct of the ·NO derivative of met-trHbN, where both the ·NO and water can be directly followed, revealed that water rebinding is quite fast (∼1.49 × 108 s-1) and is responsible for the low geminate yield in trHbN. Molecular dynamics simulations, performed with trHbN and its distal mutants, indicated that in the absence of a distal water molecule, ligand access to the heme iron is not hindered. They also showed that a water molecule is stabilized next to the heme iron through hydrogen-bonding with Tyr(B10) and Gln(E11).


Biochemistry | 2011

Structure and dynamics of Mycobacterium tuberculosis truncated hemoglobin N: insights from NMR spectroscopy and molecular dynamics simulations.

Pierre-Yves Savard; Richard Daigle; Sébastien Morin; Anne Sebilo; Fanny Meindre; Patrick Lagüe; Michel Guertin; Stéphane M. Gagné

The potent nitric oxide dioxygenase (NOD) activity (trHbN-Fe²⁺-O₂ + (•)NO → trHbN-Fe³⁺-OH₂ + NO₃⁻) of Mycobacterium tuberculosis truncated hemoglobin N (trHbN) protects aerobic respiration from inhibition by (•)NO. The high activity of trHbN has been attributed in part to the presence of numerous short-lived hydrophobic cavities that allow partition and diffusion of the gaseous substrates (•)NO and O₂ to the active site. We investigated the relation between these cavities and the dynamics of the protein using solution NMR spectroscopy and molecular dynamics (MD). Results from both approaches indicate that the protein is mainly rigid with very limited motions of the backbone N-H bond vectors on the picoseconds-nanoseconds time scale, indicating that substrate diffusion and partition within trHbN may be controlled by side-chains movements. Model-free analysis also revealed the presence of slow motions (microseconds-milliseconds), not observed in MD simulations, for many residues located in helices B and G including the distal heme pocket Tyr33(B10). All currently known crystal structures and molecular dynamics data of truncated hemoglobins with the so-called pre-A N-terminal extension suggest a stable α-helical conformation that extends in solution. Moreover, a recent study attributed a crucial role to the pre-A helix for NOD activity. However, solution NMR data clearly show that in near-physiological conditions these residues do not adopt an α-helical conformation and are significantly disordered and that the helical conformation seen in crystal structures is likely induced by crystal contacts. Although this lack of order for the pre-A does not disagree with an important functional role for these residues, our data show that one should not assume an helical conformation for these residues in any functional interpretation. Moreover, future molecular dynamics simulations should not use an initial α-helical conformation for these residues in order to avoid a bias based on an erroneous initial structure for the N-termini residues. This work constitutes the first study of a truncated hemoglobin dynamics performed by solution heteronuclear relaxation NMR spectroscopy.


Biophysical Journal | 2009

Theoretical Investigations of Nitric Oxide Channeling in Mycobacterium tuberculosis Truncated Hemoglobin N

Richard Daigle; Julie-Anne Rousseau; Michel Guertin; Patrick Lagüe

Mycobacterium tuberculosis group I truncated hemoglobin trHbN catalyzes the oxidation of nitric oxide (NO) to nitrate with a second-order rate constant k approximately 745 microM(-1) s(-1) at 23 degrees C (nitric oxide dioxygenase reaction). It was proposed that this high efficiency is associated with the presence of hydrophobic tunnels inside trHbN structure that allow substrate diffusion to the distal heme pocket. In this work, we investigated the mechanisms of NO diffusion within trHbN tunnels in the context of the nitric oxide dioxygenase reaction using two independent approaches. Molecular dynamics simulations of trHbN were performed in the presence of explicit NO molecules. Successful NO diffusion from the bulk solvent to the distal heme pocket was observed in all simulations performed. The simulations revealed that NO interacts with trHbN at specific surface sites, composed of hydrophobic residues located at tunnel entrances. The entry and the internal diffusion of NO inside trHbN were performed using the Long, Short, and EH tunnels reported earlier. The Short tunnel was preferentially used by NO to reach the distal heme pocket. This preference is ascribed to its hydrophobic funnel-shape entrance, covering a large area extending far from the tunnel entrance. This funnel-shape entrance triggers the frequent formation of solvent-excluded cavities capable of hosting up to three NO molecules, thereby accelerating NO capture and entry. The importance of hydrophobicity of entrances for NO capture is highlighted by a comparison with a polar mutant for which residues at entrances were mutated with polar residues. A complete map of NO diffusion pathways inside trHbN matrix was calculated, and NO molecules were found to diffuse from Xe cavity to Xe cavity. This scheme was in perfect agreement with the three-dimensional free-energy distribution calculated using implicit ligand sampling. The trajectories showed that NO significantly alters the dynamics of the key amino acids of Phe(62)(E15), a residue proposed to act as a gate controlling ligand traffic inside the Long tunnel, and also of Ile(119)(H11), at the entrance of the Short tunnel. It is noteworthy that NO diffusion inside trHbN tunnels is much faster than that reported previously for myoglobin. The results presented in this work shed light on the diffusion mechanism of apolar gaseous substrates inside protein matrix.


Journal of Medicinal Chemistry | 2014

Discovery of a non-estrogenic irreversible inhibitor of 17β-hydroxysteroid dehydrogenase type 1 from 3-substituted-16β-(m-carbamoylbenzyl)-estradiol derivatives.

René Maltais; Diana Ayan; Alexandre Trottier; Xavier Barbeau; Patrick Lagüe; Jean-Emmanuel Bouchard; Donald Poirier

17β-Hydroxysteroid dehydrogenase type 1 (17β-HSD1) is thought to play a pivotal role in the progression of estrogen-sensitive breast cancer by transforming estrone (E1) into estradiol (E2). We designed three successive series of E2-derivatives at position C3 of the potent inhibitor 16β-(m-carbamoylbenzyl)-E2 to remove its unwanted estrogenic activity. We report the chemical synthesis and characterization of 20 new E2-derivatives, their evaluation as 17β-HSD1 inhibitors, and their proliferative (estrogenic) activity on estrogen-sensitive cells. The structure-activity relationship study provided a new potent and steroidal nonestrogenic inhibitor of 17β-HSD1 named 3-{[(16β,17β)-3-(2-bromoethyl)-17-hydroxyestra-1(10),2,4-trien-16-yl]methyl}benzamide (23b). In fact, this compound inhibited the transformation of E1 into E2 by 17β-HSD1 in T-47D cells (IC50 = 83 nM), did not inhibit 17β-HSD2, 17β-HSD7, 17β-HSD12, and CYP3A4, and did not stimulate the proliferation of estrogen-sensitive MCF-7 cells. We also discussed the results of kinetic and molecular modeling (docking) experiments, suggesting that compound 23b is a competitive and irreversible inhibitor of 17β-HSD1.


Proteins | 2011

Is there nascent structure in the intrinsically disordered region of troponin I

Olivier Julien; Pascal Mercier; Claire N. Allen; Olivier Fisette; Carlos H.I. Ramos; Patrick Lagüe; Tharin M. A. Blumenschein; Brian D. Sykes

In striated muscle, the binding of calcium to troponin C (TnC) results in the removal of the C‐terminal region of the inhibitory protein troponin I (TnI) from actin. While structural studies of the muscle system have been successful in determining the overall organization of most of the components involved in force generation at the atomic level, the structure and dynamics of the C‐terminal region of TnI remains controversial. This domain of TnI is highly flexible, and it has been proposed that this intrinsically disordered region (IDR) regulates contraction via a “fly‐casting” mechanism. Different structures have been presented for this region using different methodologies: a single α‐helix, a “mobile domain” containing a small β‐sheet, an unstructured region, and a two helix segment. To investigate whether this IDR has in fact any nascent structure, we have constructed a skeletal TnC‐TnI chimera that contains the N‐domain of TnC (1–90), a short linker (GGAGG), and the C‐terminal region of TnI (97–182) and have acquired 15N NMR relaxation data for this chimera. We compare the experimental relaxation parameters with those calculated from molecular dynamic simulations using four models based upon the structural studies. Our experimental results suggest that the C‐terminal region of TnI does not contain any defined secondary structure, supporting the “fly‐casting” mechanism. We interpret the presence of a “plateau” in the 15N NMR relaxation data as being an intrinsic property of IDRs. We also identified a more rigid adjacent region of TnI that has implications for muscle performance under ischemic conditions. Proteins 2011.


Biophysical Journal | 2012

Determining the mode of action involved in the antimicrobial activity of synthetic peptides: a solid-state NMR and FTIR study.

Aurélien Lorin; Mathieu Noël; Marie-Ève Provencher; Vanessa Turcotte; Sébastien Cardinal; Patrick Lagüe; Normand Voyer; Michèle Auger

We have previously shown that leucine to lysine substitution(s) in neutral synthetic crown ether containing 14-mer peptide affect the peptide structure and its ability to permeabilize bilayers. Depending on the substitution position, the peptides adopt mainly either a α-helical structure able to permeabilize dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylglycerol (DMPG) vesicles (nonselective peptides) or an intermolecular β-sheet structure only able to permeabilize DMPG vesicles (selective peptides). In this study, we have used a combination of solid-state NMR and Fourier transform infrared spectroscopy to investigate the effects of nonselective α-helical and selective intermolecular β-sheet peptides on both types of bilayers. (31)P NMR results indicate that both types of peptides interact with the headgroups of DMPC and DMPG bilayers. (2)H NMR and Fourier transform infrared results reveal an ordering of the hydrophobic core of bilayers when leakage is noted, i.e., for DMPG vesicles in the presence of both types of peptides and DMPC vesicles in the presence of nonselective peptides. However, selective peptides have no significant effect on the ordering of DMPC acyl chains. The ability of these 14-mer peptides to permeabilize lipid vesicles therefore appears to be related to their ability to increase the order of the bilayer hydrophobic core.


BioMed Research International | 2012

Synergistic Applications of MD and NMR for the Study of Biological Systems

Olivier Fisette; Patrick Lagüe; Stéphane M. Gagné; Sébastien Morin

Modern biological sciences are becoming more and more multidisciplinary. At the same time, theoretical and computational approaches gain in reliability and their field of application widens. In this short paper, we discuss recent advances in the areas of solution nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations that were made possible by the combination of both methods, that is, through their synergistic use. We present the main NMR observables and parameters that can be computed from simulations, and how they are used in a variety of complementary applications, including dynamics studies, model-free analysis, force field validation, and structural studies.

Collaboration


Dive into the Patrick Lagüe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge