Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrick Laufs is active.

Publication


Featured researches published by Patrick Laufs.


Development | 2004

MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems.

Patrick Laufs; Alexis Peaucelle; Halima Morin; Jan Traas

We have analysed the role of a microRNA, miR164, in boundary formation during organ initiation from Arabidopsis meristems. The establishment and maintenance of the boundary domain are controlled by three partially redundant genes, CUP-SHAPED COTYLEDON1 (CUC1), CUC2 and CUC3. We show that miR164 overexpression phenocopies the cuc1 cuc2 double mutant by inducing post-transcriptional downregulation of CUC1 and CUC2 but not CUC3 mRNA levels. Disruption of CUC2 regulation by miR164, either by making CUC2 resistant to the miRNA or by reducing miRNA levels leads to similar enlarged boundary domains. We relate this enlargement to the division patterns of the boundary cells. We propose that miR164 constrains the expansion of the boundary domain, by degrading CUC1 and CUC2 mRNAs.


The Plant Cell | 2006

The balance between the MIR164A and CUC2 genes controls leaf margin serration in Arabidopsis.

Krisztina Nikovics; Thomas Blein; Alexis Peaucelle; Tetsuya Ishida; Halima Morin; Mitsuhiro Aida; Patrick Laufs

CUP-SHAPED COTYLEDON1 (CUC1), CUC2, and CUC3 define the boundary domain around organs in the Arabidopsis thaliana meristem. CUC1 and CUC2 transcripts are targeted by a microRNA (miRNA), miR164, encoded by MIR164A, B, and C. We show that each MIR164 is transcribed to generate a large population of primary miRNAs of variable size with a locally conserved secondary structure around the pre-miRNA. We identified mutations in the MIR164A gene that deepen serration of the leaf margin. By contrast, leaves of plants overexpressing miR164 have smooth margins. Enhanced leaf serration was observed following the expression of an miR164-resistant CUC2 but not of an miR164-resistant CUC1. Furthermore, CUC2 inactivation abolished serration in mir164a mutants and the wild type, whereas CUC1 inactivation did not. Thus, CUC2 specifically controls leaf margin development. CUC2 and MIR164A are transcribed in overlapping domains at the margins of young leaf primordia, with transcription gradually restricted to the sinus, where the leaf margins become serrated. We suggest that leaf margin development is controlled by a two-step process in Arabidopsis. The pattern of serration is determined first, independently of CUC2 and miR164. The balance between coexpressed CUC2 and MIR164A then determines the extent of serration.


Science | 2008

A conserved molecular framework for compound leaf development.

Thomas Blein; Amada Pulido; Aurélie Vialette-Guiraud; Krisztina Nikovics; Halima Morin; Angela Hay; Ida Elisabeth Johansen; Miltos Tsiantis; Patrick Laufs

Diversity in leaf shape is produced by alterations of the margin: for example, deep dissection leads to leaflet formation and less-pronounced incision results in serrations or lobes. By combining gene silencing and mutant analyses in four distantly related eudicot species, we show that reducing the function of NAM/CUC boundary genes (NO APICAL MERISTEM and CUP-SHAPED COTYLEDON) leads to a suppression of all marginal outgrowths and to fewer and fused leaflets. We propose that NAM/CUC genes promote formation of a boundary domain that delimits leaflets. This domain has a dual role promoting leaflet separation locally and leaflet formation at distance. In this manner, boundaries of compound leaves resemble boundaries functioning during animal development.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Model for the regulation of Arabidopsis thaliana leaf margin development

Gemma Bilsborough; Adam Runions; Michalis Barkoulas; Huw W Jenkins; Alice Hasson; Carla Galinha; Patrick Laufs; Angela Hay; Przemyslaw Prusinkiewicz; Miltos Tsiantis

Biological shapes are often produced by the iterative generation of repeated units. The mechanistic basis of such iteration is an area of intense investigation. Leaf development in the model plant Arabidopsis is one such example where the repeated generation of leaf margin protrusions, termed serrations, is a key feature of final shape. However, the regulatory logic underlying this process is unclear. Here, we use a combination of developmental genetics and computational modeling to show that serration development is the morphological read-out of a spatially distributed regulatory mechanism, which creates interspersed activity peaks of the growth-promoting hormone auxin and the CUP-SHAPED COTYLEDON2 (CUC2) transcription factor. This mechanism operates at the growing leaf margin via a regulatory module consisting of two feedback loops working in concert. The first loop relates the transport of auxin to its own distribution, via polar membrane localization of the PINFORMED1 (PIN1) efflux transporter. This loop captures the potential of auxin to generate self-organizing patterns in diverse developmental contexts. In the second loop, CUC2 promotes the generation of PIN1-dependent auxin activity maxima while auxin represses CUC2 expression. This CUC2-dependent loop regulates activity of the conserved auxin efflux module in leaf margins to generate stable serration patterns. Conceptualizing leaf margin development via this mechanism also helps to explain how other developmental regulators influence leaf shape.


Current Biology | 2008

Arabidopsis Phyllotaxis Is Controlled by the Methyl-Esterification Status of Cell-Wall Pectins

Alexis Peaucelle; Romain Louvet; Jorunn N. Johansen; Herman Höfte; Patrick Laufs; Jérôme Pelloux; Grégory Mouille

Plant organs are produced from meristems in a characteristic pattern. This pattern, referred to as phyllotaxis, is thought to be generated by local gradients of an information molecule, auxin. Some studies propose a key role for the mechanical properties of the cell walls in the control of organ outgrowth. A major cell-wall component is the linear alpha-1-4-linked D-GalAp pectic polysaccharide homogalacturonan (HG), which plays a key role in cell-to-cell cohesion. HG is deposited in the cell wall in a highly (70%-80%) methyl-esterified form and is subsequently de-methyl-esterified by pectin methyl-esterases (PME, EC 3.1.1.11). PME activity is itself regulated by endogenous PME inhibitor (PMEI) proteins. PME action modulates cell-wall-matrix properties and plays a role in the control of cell growth. Here, we show that the formation of flower primordia in the Arabidopsis shoot apical meristem is accompanied by the de-methyl-esterification of pectic polysaccharides in the cell walls. In addition, experimental perturbation of the methyl-esterification status of pectins within the meristem dramatically alters the phyllotactic pattern. These results demonstrate that regulated de-methyl-esterification of pectins is a key event in the outgrowth of primordia and possibly also in phyllotactic patterning.


The Plant Cell | 1998

Cellular Parameters of the Shoot Apical Meristem in Arabidopsis

Patrick Laufs; Olivier Grandjean; Claudia Jonak; Kiên Kiêu; Jan Traas

The shoot apical meristem (SAM) is a small group of dividing cells that generate all of the aerial parts of the plant. With the goal of providing a framework for the analysis of Arabidopsis meristems at the cellular level, we performed a detailed morphometric study of actively growing inflorescence apices of the Landsberg erecta and Wassilewskija ecotypes. For this purpose, cell size, spatial distribution of mitotic cells, and the mitotic index were determined in a series of optical sections made with a confocal laser scanning microscope. The results allowed us to identify zones within the inflorescence SAM with different cell proliferation rates. In particular, we were able to define a central area that was four to six cells wide and had a low mitotic index. We used this technique to compare the meristem of the wild type with the enlarged meristems of two mutants, clavata3-1 (clv3-1) and mgoun2 (mgo2). One of the proposed functions of the CLV genes is to limit cell division rates in the center of the meristem. Our data allowed us to reject this hypothesis, because the mitotic index was reduced in the inflorescence meristem of the clv3-1 mutant. We also observed a large zone of slowly dividing cells in meristems of clv3-1 seedlings. This zone was not detectable in the wild type. These results suggest that the central area is increased in size in the mutant meristem, which is in line with the hypothesis that the CLV3 gene is necessary for the transition of cells from the central to the peripheral zone. Genetic and microscopic analyses suggest that mgo2 is impaired in the production of primordia, and we previously proposed that the increased size of the mgo2 meristem could be due to an accumulation of cells at the periphery. Our morphometric analysis showed that mgo2 meristems, in contrast to those of clv3-1, have an enlarged periphery with high cell proliferation rates. This confirms that clv3-1 and mgo2 lead to meristem overgrowth by affecting different aspects of meristem function.


The Plant Cell | 2004

In Vivo Analysis of Cell Division, Cell Growth, and Differentiation at the Shoot Apical Meristem in Arabidopsis

Olivier Grandjean; Teva Vernoux; Patrick Laufs; Katia Belcram; Yuki Mizukami; Jan Traas

The aerial parts of the plant are generated by groups of rapidly dividing cells called shoot apical meristems. To analyze cell behavior in these structures, we developed a technique to visualize living shoot apical meristems using the confocal microscope. This method, combined with green fluorescent protein marker lines and vital stains, allows us to follow the dynamics of cell proliferation, cell expansion, and cell differentiation at the shoot apex. Using this approach, the effects of several mitotic drugs on meristem development were studied. Oryzalin (depolymerizing microtubules) very rapidly caused cell division arrest. Nevertheless, both cell expansion and cell differentiation proceeded in the treated meristems. Interestingly, DNA synthesis was not blocked, and the meristematic cells went through several rounds of endoreduplication in the presence of the drug. We next treated the meristems with two inhibitors of DNA synthesis, aphidicolin and hydroxyurea. In this case, cell growth and, later, cell differentiation were inhibited, suggesting an important role for DNA synthesis in growth and patterning.


Plant Journal | 2008

Interplay of miR164, CUP‐SHAPED COTYLEDON genes and LATERAL SUPPRESSOR controls axillary meristem formation in Arabidopsis thaliana

Smita Raman; Thomas Greb; Alexis Peaucelle; Thomas Blein; Patrick Laufs; Klaus Theres

Aerial architecture in higher plants is established post-embryonically by the inception of new meristems in the axils of leaves. These axillary meristems develop into side shoots or flowers. In Arabidopsis, the NAC domain transcription factors CUP SHAPED COTYLEDON1 (CUC1), CUC2 and CUC3 function redundantly in initiating the shoot apical meristem and establishing organ boundaries. Transcripts of CUC1 and CUC2 are targeted for degradation by miR164. In this study, we show that cuc3-2 mutants are impaired in axillary meristem initiation. Overexpression of miR164 in the cuc3-2 mutant caused an almost complete block of axillary meristem formation. Conversely, mir164 mutants and plants harbouring miR164-resistant alleles of CUC1 or CUC2 developed accessory buds in leaf axils. Collectively, these experiments reveal that, in addition to CUC3, redundant functions of CUC1 and CUC2 as well as miR164 regulation are required for the establishment of axillary meristems. Studies on LAS transcript accumulation in mir164 triple mutants and cuc3-2 plants overexpressing miR164 suggest that regulation of axillary meristem formation by miR164 is mediated through CUC1 and CUC2, which in turn regulate LAS.


The Plant Cell | 2006

Dynamic and Compensatory Responses of Arabidopsis Shoot and Floral Meristems to CLV3 Signaling

Ralf Müller; Lorenzo Borghi; Dorota Kwiatkowska; Patrick Laufs; Rüdiger Simon

In Arabidopsis thaliana, the stem cell population of the shoot system is controlled by regulatory circuitry involving the WUSCHEL (WUS) and CLAVATA (CLV1-3) genes. WUS signals from the organizing center (OC) to promote stem cell fate at the meristem apex. Stem cells express the secreted peptide CLV3 that activates a signal transduction cascade to restrict WUS expression, thus providing a feedback mechanism. Stem cell homeostasis is proposed to be achieved by balancing these signals. We tested the dynamics of CLV3 signaling using an inducible gene expression system. We show here that increasing the CLV3 signal can very rapidly repress WUS expression during development, which in turn causes a fast reduction of CLV3 expression. We demonstrate that increased CLV3 signaling restricts meristem growth and promotes allocation of peripheral meristem cells into organ primordia. In addition, we extend the current model for stem cell control by showing that meristem homeostasis tolerates variation in CLV3 levels over a 10-fold range and that high-level CLV3 signaling can be partially compensated with time, indicating that the level of CLV3 expression communicates only limited information on stem cell number to the underlying OC cells.


The Plant Cell | 2011

Evolution and Diverse Roles of the CUP-SHAPED COTYLEDON Genes in Arabidopsis Leaf Development

Alice Hasson; Anne Plessis; Thomas Blein; Bernard Adroher; Stephen P. Grigg; Miltos Tsiantis; Arezki Boudaoud; Catherine Damerval; Patrick Laufs

This work reveals the functional divergence of the three CUP-SHAPED COTYLEDON genes during Arabidopsis leaf development. In particular, it shows that the functions and expression patterns of CUC1 and CUC2 diverged since the formation of these genes by the duplication of a common ancestor within the Brassicale lineage. CUP-SHAPED COTYLEDON2 (CUC2) and the interacting microRNA miR164 regulate leaf margin dissection. Here, we further investigate the evolution and the specific roles of the CUC1 to CUC3 genes during Arabidopsis thaliana leaf serration. We show that CUC2 is essential for dissecting the leaves of a wide range of lobed/serrated Arabidopsis lines. Inactivation of CUC3 leads to a partial suppression of the serrations, indicating a role for this gene in leaf shaping. Morphometric analysis of leaf development and genetic analysis provide evidence for different temporal contributions of CUC2 and CUC3. Chimeric constructs mixing CUC regulatory sequences with different coding sequences reveal both redundant and specific roles for the three CUC genes that could be traced back to changes in their expression pattern or protein activity. In particular, we show that CUC1 triggers the formation of leaflets when ectopically expressed instead of CUC2 in the developing leaves. These divergent fates of the CUC1 and CUC2 genes after their formation by the duplication of a common ancestor is consistent with the signature of positive selection detected on the ancestral branch to CUC1. Combining experimental observations with the retraced origin of the CUC genes in the Brassicales, we propose an evolutionary scenario for the CUC genes.

Collaboration


Dive into the Patrick Laufs's collaboration.

Top Co-Authors

Avatar

Alexis Peaucelle

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Halima Morin

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Thomas Blein

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Alice Hasson

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Herman Höfte

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Jocelyne Kronenberger

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Katia Belcram

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge