Patrick Lavigne
Université de Montréal
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Patrick Lavigne.
Arthritis Research & Therapy | 2008
Hassan Fahmi; Qin Shi; Patrick Lavigne; Pierre Ranger; Julio C. Fernandes; Mohamed Benderdour
Introduction4-Hydroxynonenal (HNE) is one of the most abundant and reactive aldehydes of lipid peroxidation products and exerts various effects on intracellular and extracellular signalling cascades. We have previously shown that HNE at low concentrations could be considered as an important mediator of catabolic and inflammatory processes in osteoarthritis (OA). In the present study, we focused on characterizing the signalling cascade induced by high HNE concentration involved in cell death in human OA chondrocytes.MethodsMarkers of apoptosis were quantified with commercial kits. Protein levels were evaluated by Western blotting. Glutathione (GSH) and ATP levels were measured with commercial kits. Glucose uptake was assessed by 2-deoxy-D-[3H]-glucose. The role of GSH-S-transferase A4-4 (GSTA4-4) in controlling HNE-induced chondrocyte apoptosis was investigated by chondrocyte transfection with small interfering RNA (siRNA) or with the expression vector of GSTA4-4.ResultsOur data showed that HNE at concentrations of up to 10 μM did not alter cell viability but was cytotoxic at concentrations of greater than or equal to 20 μM. HNE-induced chondrocyte death exhibited several classical hallmarks of apoptosis, including caspase activation, cytochrome c and apoptosis-induced factor release from mitochondria, poly (ADP-ribose) polymerase cleavage, Bcl-2 downregulation, Bax upregulation, and DNA fragmentation. Our study of signalling pathways revealed that HNE suppressed pro-survival Akt kinase activity but, in contrast, induced Fas/CD95 and p53 expression in chondrocytes. All of these effects were inhibited by an antioxidant, N-acetyl-cysteine. Analysis of cellular energy and redox status showed that HNE induced ATP, NADPH, and GSH depletion and inhibited glucose uptake and citric acid cycle activity. GSTA4-4 ablation by the siRNA method augmented HNE cytotoxicity, but, conversely, its overexpression efficiently protected chondrocytes from HNE-induced cell death.ConclusionOur study provides novel insights into the potential mechanisms of cell death in OA cartilage and suggests the potential role of HNE in OA pathophysiology. GSTA4-4 expression is critically important for cellular defence against oxidative stress-induced cell death in OA cartilage, possibly by HNE elimination.
Molecular Therapy | 2008
Julio C. Fernandes; Huijie Wang; Christian Jreyssaty; Mohamed Benderdour; Patrick Lavigne; Xingpin Qiu; Françoise M. Winnik; Xiaoling Zhang; Kerong Dai; Qin Shi
Interleukin-1 receptor antagonist (IL-1Ra), is a natural blocker of the inflammatory cytokine interleukin-1. Using a rat adjuvant-induced arthritis (AIA) model of rheumatoid arthritis (RA), we examined the protective effects of IL-1Ra in bone metabolism in vivo after folate-mediated nonviral gene delivery. We detected secreted human IL-1Ra protein in serum and cultured primary osteoblasts of rats that were treated with chitosan-IL-1Ra and folate-IL-1Ra-chitosan nanoparticles, respectively. In vivo, IL-1Ra gene delivery significantly reverted alterations in bone turnover observed in arthritic animals by modulating the level of osteocalcin (OC) as well as the activities of alkaline phosphatase and tartrate-resistant acid phosphatase. The protective effects of these nanoparticles were evident from the decrease in the expression levels of interleukine-1beta and prostaglandin E(2) as well as osteoclast number and other histopathological findings. Compared to naked DNA and chitosan-DNA, folate-chitosan-DNA nanoparticles were less cytotoxic and enhanced IL-1Ra protein synthesis in vitro and offered a better protection against inflammation and abnormal bone metabolism in vivo. Nonviral gene therapy with folate-chitosan-DNA nanoparticles containing the IL-1 Ra gene seemed to protect against bone damage and inflammation in rat adjuvant-induced arthritis model.
Journal of Cellular Biochemistry | 2007
Barbara Morquette; Qin Shi; Hassan Fahmi; Patrick Lavigne; John A. Di Battista; Julio C. Fernandes; Mohamed Benderdour
4‐hydroxynonenal (HNE), a lipid peroxidation end product, is produced abundantly in osteoarthritic (OA) articular tissues and was recently identified as a potent catabolic factor in OA cartilage. In this study, we provide additional evidence that HNE acts as an inflammatory mediator by elucidating the signaling cascades targeted in OA chondrocytes leading to cyclooxygenase‐2 (COX‐2) and inducible nitric oxide synthase (iNOS) gene expression. HNE induced COX‐2 protein and mRNA levels with accompanying increases in prostaglandin E2 (PGE2) production. In contrast, HNE had no effect on basal iNOS expression or nitric oxide (NO) release. However, HNE strongly inhibited IL‐1β‐induced iNOS or NO production. Transient transfection experiments revealed that the ATF/CRE site (−58/−53) is essential for HNE‐induced COX‐2 promoter activation and indeed HNE induced ATF‐2 and CREB‐1 phosphorylation as well as ATF/CRE binding activity. Overexpression of p38 MAPK enhanced the HNE‐induced ATF/CRE luciferase reporter plasmid activation, COX‐2 synthesis and promoter activity. HNE abrogated IL‐1β‐induced iNOS expression and promoter activity mainly through NF‐κB site (−5,817/−5,808) possibly via suppression of IKKα‐induced IκBα phosphorylation and NF‐κB/p65 nuclear translocation. Upon examination of upstream signaling components, we found that IKKα was inactivated through HNE/IKKα adduct formation. Taken together, these findings illustrate the central role played by HNE in the regulation of COX‐2 and iNOS in OA. The aldehyde induced selectively COX‐2 expression via ATF/CRE activation and inhibited iNOS via IKKα inactivation. J. Cell. Biochem. 100: 1217–1231, 2007.
Arthritis Research & Therapy | 2006
Qin Shi; Véronique Côté; Hassan Fahmi; Patrick Lavigne; Hassan Afif; John A. Di Battista; Julio C. Fernandes; Mohamed Benderdour
Abstract4-Hydroxynonenal (HNE), a lipid peroxidation end product, is produced abundantly in osteoarthritic (OA) articular tissues, but its role in bone metabolism is ill-defined. In this study, we tested the hypothesis that alterations in OA osteoblast metabolism are attributed, in part, to increased levels of HNE. Our data showed that HNE/protein adduct levels were higher in OA osteoblasts compared to normal and when OA osteoblasts were treated with H2O2. Investigating osteoblast markers, we found that HNE increased osteocalcin and type I collagen synthesis but inhibited alkaline phosphatase activity. We next examined the effects of HNE on the signaling pathways controlling cyclooxygenase-2 (COX-2) and interleukin-6 (IL-6) expression in view of their putative role in OA pathophysiology. HNE dose-dependently decreased basal and tumour necrosis factor-α (TNF-α)-induced IL-6 expression while inducing COX-2 expression and prostaglandin E2 (PGE2) release. In a similar pattern, HNE induces changes in osteoblast markers as well as PGE2 and IL-6 release in normal osteoblasts. Upon examination of signaling pathways involved in PGE2 and IL-6 production, we found that HNE-induced PGE2 release was abrogated by SB202190, a p38 mitogen-activated protein kinase (MAPK) inhibitor. Overexpression of p38 MAPK enhanced HNE-induced PGE2 release. In this connection, HNE markedly increased the phosphorylation of p38 MAPK, JNK2, and transcription factors (CREB-1, ATF-2) with a concomitant increase in the DNA-binding activity of CRE/ATF. Transfection experiments with a human COX-2 promoter construct revealed that the CRE element (-58/-53 bp) was essential for HNE-induced COX-2 promoter activity. However, HNE inhibited the phosphorylation of IκBα and subsequently the DNA-binding activity of nuclear factor-κB. Overexpression of IKKα increased TNF-α-induced IL-6 production. This induction was inhibited when TNF-α was combined with HNE. These findings suggest that HNE may exert multiple effects on human OA osteoblasts by selective activation of signal transduction pathways and alteration of osteoblastic phenotype expression and pro-inflammatory mediator production.
Journal of Orthopaedic Research | 2017
S. Sim; Anik Chevrier; M. Garon; E. Quenneville; Patrick Lavigne; Alex Yaroshinsky; Caroline D. Hoemann; Michael D. Buschmann
Recent advances in the development of new drugs to halt or even reverse the progression of Osteoarthritis at an early‐stage requires new tools to detect early degeneration of articular cartilage. We investigated the ability of an electromechanical probe and an automated indentation technique to characterize entire human articular surfaces for rapid non‐destructive discrimination between early degenerated and healthy articular cartilage. Human cadaveric asymptomatic articular surfaces (four pairs of distal femurs and four pairs of tibial plateaus) were used. They were assessed ex vivo: macroscopically, electromechanically, (maps of the electromechanical quantitative parameter, QP, reflecting streaming potentials), mechanically (maps of the instantaneous modulus, IM), and through cartilage thickness. Osteochondral cores were also harvested from healthy and degenerated regions for histological assessment, biochemical analyses, and unconfined compression tests. The macroscopic visual assessment delimited three distinct regions on each articular surface: Region I was macroscopically degenerated, region II was macroscopically normal but adjacent to regions I and III was the remaining normal articular surface. Thus, each extracted core was assigned to one of the three regions. A mixed effect model revealed that only the QP (p < 0.0001) and IM (p < 0.0001) were able to statistically discriminate the three regions. Effect size was higher for QP and IM than other assessments, indicating greater sensitivity to distinguish early degeneration of cartilage. When considering the mapping feature of the QP and IM techniques, it also revealed bilateral symmetry in a moderately similar distribution pattern between bilateral joints.
American Journal of Sports Medicine | 2012
Marc-Olivier Kiss; A. Levasseur; Yvan Petit; Patrick Lavigne
Background: Osteochondral autografts in mosaicplasty are inserted in a press-fit fashion, and hence, patients are kept nonweightbearing for up to 2 months after surgery to allow bone healing and prevent complications. Very little has been published regarding alternative fixation techniques of those grafts. Hypothesis: Osteochondral autografts stabilized with a resorbable osteoconductive bone cement would have a greater load-bearing capacity than standard press-fit grafts. Study Design: Controlled laboratory study. Methods: Biomechanical testing was conducted on 8 pairs of cadaveric bovine distal femurs. For the first 4 pairs, 6 single osteochondral autografts were inserted in a press-fit fashion on one femur. On the contralateral femur, 6 grafts were stabilized with a calcium triglyceride osteoconductive bone cement. For the 4 remaining pairs of femurs, 4 groups of 3 adjacent press-fit grafts were inserted on one femur, whereas on the contralateral femur, grafts were cemented. After a maturation period of 48 hours, axial loading was applied on all single grafts and on the middle graft of each 3-in-a-row series. Results: For the single-graft configuration, median loads required to sink the press-fit and cemented grafts by 2 and 3 mm were 281.87 N versus 345.56 N (P = .015) and 336.29 N versus 454.08 N (P = .018), respectively. For the 3-in-a-row configuration, median loads required to sink the press-fit and cemented grafts by 2 and 3 mm were 260.31 N versus 353.47 N (P = .035) and 384.83 N versus 455.68 N (P = .029), respectively. Conclusion: Fixation of osteochondral grafts using bone cement appears to improve immediate stability over the original mosaicplasty technique for both single- and multiple-graft configurations. Clinical Relevance: Achieving greater primary stability of osteochondral grafts could potentially accelerate postoperative recovery, allowing early weightbearing and physical therapy.
PLOS ONE | 2016
Martin Pellicelli; Cynthia Picard; DaShen Wang; Patrick Lavigne; Alain Moreau
We previously reported a loss-of-PITX1 expression in patients suffering of knee/hip osteoarthritis (OA). Search for the mechanism underlying this event led us to discover that PITX1 repression was triggered by the aberrant nuclear accumulation of Prohibitin (PHB1), an E2F1 co-repressor, in OA articular chondrocytes. In the current study, we assessed in details the involvement of E2F transcription factors in regulating PITX1 expression. We also analyzed other genes that are similarly regulated by E2F in regard to osteoarthritis. The transcriptional regulation of the PITX1 promoter by E2F1 was analyzed with the luciferase reporter assay, and chromatin immunoprecipitation assays, which confirmed direct E2F1-PITX1 interactions. The probable binding sites for E2F1 in the PITX1 promoter were identified by DNA pulldown experiments. In silico and in vitro analyses show that the PITX1 proximal promoter region contains 2 specific sequences that are bound by E2F1. Overexpression of E2F1 enhances PITX1 promoter activity and mRNA transcription. In primary control and osteoarthritis chondrocytes, real time RT-PCR was used to measure the mRNA expression levels of candidate genes under E2F1 transcriptional control. Transcription Factor Dp-1 (TFDP1) knockdown experiments confirmed that the E2F1-TFDP1 complex regulates PITX1. Knockdown of TFDP1, an E2F1 dimerization partner, inhibits the activating effect of E2F1 and reduces both PITX1 promoter activity and mRNA transcription. Real time RT-PCR results reveal reduced expression of TFDP1 and a similar downregulation of their targets PITX1, BRCA1, CDKN1A, and RAD51 in mid-stage OA chondrocytes. Collectively, our data define a previously uncharacterized role for E2F1 and TFDP1 in the transcriptional regulation of PITX1 in articular chondrocytes. Additional E2F1 targets may be affected in OA pathogenesis.
Arthritis & Rheumatism | 2013
Cynthia Picard; Martin Pellicelli; Maryam Taheri; Jean-Francois Lavoie; Roxanne Doucet; DaShen Wang; Lauriane Bernard; Saadallah Bouhanik; Patrick Lavigne; Alain Moreau
OBJECTIVE To decipher the molecular mechanisms down-regulating PITX1 expression in primary osteoarthritis (OA). METHODS The functional activity of different PITX1 promoter regions was assessed by luciferase reporter assay. Tandem mass spectrometry coupled to protein sequencing was performed using nuclear extracts prepared from OA chondrocytes, in order to identify proteins bound to DNA regulatory elements. Expression analyses of selected candidate proteins were performed by real-time reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry methods, using cartilage sections and articular chondrocytes from non-OA control subjects and patients with OA. Gain-of-function and loss-of-function experiments were performed in normal and OA chondrocytes, respectively, to study their effects on PITX1 regulation. The results were validated by real-time RT-PCR and immunohistochemistry in STR/Ort mice, a well-known animal model of OA. RESULTS PITX1 promoter analyses led to the identification of prohibitin 1 (PHB1) bound to a distal E2F1 transcription factor site. Aberrant accumulation of PHB1 was detected in the nuclei of OA articular chondrocytes, and overexpression of PHB1 in control cells was sufficient to inhibit endogenous PITX1 expression at the messenger RNA and protein levels. Conversely, knockdown of PHB1 in OA articular chondrocytes resulted in up-regulation of PITX1. Studies of early molecular changes in STR/Ort mice revealed a similar nuclear accumulation of PHB1, which correlated with Pitx1 repression. CONCLUSION Collectively, these data define an unrecognized role for PHB1 in repressing PITX1 expression in OA chondrocytes.
Arthritis & Rheumatism | 2006
Barbara Morquette; Qin Shi; Patrick Lavigne; Pierre Ranger; Julio C. Fernandes; Mohamed Benderdour
Osteoarthritis and Cartilage | 2005
Patrick Lavigne; Mohamed Benderdour; Daniel Lajeunesse; Pascal Reboul; Qin Shi; J.-P. Pelletier; Johanne Martel-Pelletier; Julio C. Fernandes