Patrick Maillard
Pasteur Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Patrick Maillard.
PLOS ONE | 2010
Noëlla Arnaud; Stéphanie Dabo; Patrick Maillard; Agata Budkowska; Katerina I. Kalliampakou; Penelope Mavromara; Dominique Garcin; Jacques Hugon; Anne Gatignol; Daisuke Akazawa; Takaji Wakita; Eliane F. Meurs
Hepatitis C virus is a poor inducer of interferon (IFN), although its structured viral RNA can bind the RNA helicase RIG-I, and activate the IFN-induction pathway. Low IFN induction has been attributed to HCV NS3/4A protease-mediated cleavage of the mitochondria-adapter MAVS. Here, we have investigated the early events of IFN induction upon HCV infection, using the cell-cultured HCV JFH1 strain and the new HCV-permissive hepatoma-derived Huh7.25.CD81 cell subclone. These cells depend on ectopic expression of the RIG-I ubiquitinating enzyme TRIM25 to induce IFN through the RIG-I/MAVS pathway. We observed induction of IFN during the first 12 hrs of HCV infection, after which a decline occurred which was more abrupt at the protein than at the RNA level, revealing a novel HCV-mediated control of IFN induction at the level of translation. The cellular protein kinase PKR is an important regulator of translation, through the phosphorylation of its substrate the eIF2α initiation factor. A comparison of the expression of luciferase placed under the control of an eIF2α-dependent (IRESEMCV) or independent (IRESHCV) RNA showed a specific HCV-mediated inhibition of eIF2α-dependent translation. We demonstrated that HCV infection triggers the phosphorylation of both PKR and eIF2α at 12 and 15 hrs post-infection. PKR silencing, as well as treatment with PKR pharmacological inhibitors, restored IFN induction in JFH1-infected cells, at least until 18 hrs post-infection, at which time a decrease in IFN expression could be attributed to NS3/4A-mediated MAVS cleavage. Importantly, both PKR silencing and PKR inhibitors led to inhibition of HCV yields in cells that express functional RIG-I/MAVS. In conclusion, here we provide the first evidence that HCV uses PKR to restrain its ability to induce IFN through the RIG-I/MAVS pathway. This opens up new possibilities to assay PKR chemical inhibitors for their potential to boost innate immunity in HCV infection.
Journal of Biological Chemistry | 2004
Patrick Maillard; Jean-Pierre Lavergne; Sophie Sibéril; Grazyna Faure; Farzin Roohvand; Stéphane Petres; Jean Luc Teillaud; Agata Budkowska
We have previously demonstrated that viral particles with the properties of nonenveloped hepatitis C virus (HCV) nucleocapsids occur in the serum of HCV-infected individuals (1). We show here that nucleocapsids purified directly from serum or isolated from HCV virions have FcγR-like activity and bind “nonimmune” IgG via its Fcγ domain. HCV core proteins produced in Escherichia coli and in the baculovirus expression system also bound “nonimmune” IgG and their Fcγ fragments. Folded conformation was required for IgG binding because the FcγR-like site of the core protein was inactive in denaturing conditions. Studies with synthetic core peptides showed that the region spanning amino acids 3–75 was essential for formation of the IgG-binding site. The interaction between the HCV core and human IgG is more efficient in acidic (pH 6.0) than in neutral conditions. The core protein-binding site on the IgG molecule differs from those for C1q, FcγRII (CD32), and FcγRIII (CD16) but overlaps with that for soluble protein A from Staphylococcus aureus (SpA), which is located in the CH2-CH3 interface of IgG. These characteristics of the core-IgG interaction are very similar to those of the neonatal FcRn. Surface plasmon resonance studies suggested that the binding of an anti-core antibody to HCV core protein might be “bipolar” through its paratope to the corresponding epitope and by its Fcγ region to the FcγR-like motif on this protein. These features of HCV nucleocapsids and HCV core protein may confer an advantage for HCV in terms of survival by interfering with host defense mechanisms mediated by the Fcγ part of IgG.
PLOS ONE | 2011
Patrick Maillard; Marine Walic; Philip Meuleman; Farzin Roohvand; Thierry Huby; Wilfried Le Goff; Geert Leroux-Roels; Eve-Isabelle Pécheur; Agata Budkowska
A distinctive feature of HCV is that its life cycle depends on lipoprotein metabolism. Viral morphogenesis and secretion follow the very low-density lipoprotein (VLDL) biogenesis pathway and, consequently, infectious HCV in the serum is associated with triglyceride-rich lipoproteins (TRL). Lipoprotein lipase (LPL) hydrolyzes TRL within chylomicrons and VLDL but, independently of its catalytic activity, it has a bridging activity, mediating the hepatic uptake of chylomicrons and VLDL remnants. We previously showed that exogenously added LPL increases HCV binding to hepatoma cells by acting as a bridge between virus-associated lipoproteins and cell surface heparan sulfate, while simultaneously decreasing infection levels. We show here that LPL efficiently inhibits cell infection with two HCV strains produced in hepatoma cells or in primary human hepatocytes transplanted into uPA-SCID mice with fully functional human ApoB-lipoprotein profiles. Viruses produced in vitro or in vivo were separated on iodixanol gradients into low and higher density populations, and the infection of Huh 7.5 cells by both virus populations was inhibited by LPL. The effect of LPL depended on its enzymatic activity. However, the lipase inhibitor tetrahydrolipstatin restored only a minor part of HCV infectivity, suggesting an important role of the LPL bridging function in the inhibition of infection. We followed HCV cell entry by immunoelectron microscopy with anti-envelope and anti-core antibodies. These analyses demonstrated the internalization of virus particles into hepatoma cells and their presence in intracellular vesicles and associated with lipid droplets. In the presence of LPL, HCV was retained at the cell surface. We conclude that LPL efficiently inhibits HCV infection by acting on TRL associated with HCV particles through mechanisms involving its lipolytic function, but mostly its bridging function. These mechanisms lead to immobilization of the virus at the cell surface. HCV-associated lipoproteins may therefore be a promising target for the development of new therapeutic approaches.
Molecular Immunology | 1986
Marie-Anne Petit; Patrick Maillard; Francis Capel; Jacques Pillot
Antibody responses to the three envelope (env) proteins of hepatitis B viral particles (HB-VP): the S-encoded P25 polypeptide; the pre-S(2)- and S-encoded GP33/GP36 polypeptide; and the large entire env gene (pre-S + S) product, P39/GP42, were investigated using a Western immunoblotting assay (WIBA). HB-VP proteins separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to nitrocellulose by electroblotting were used as antigenic probes to determine the polypeptide specificity of these antibodies present in immune individuals. Antisera from human subjects either after a natural HBV infection or after active immunization with the hepatitis B vaccine licensed in France were selected on the basis of a positive serological RIA test for antibodies against hepatitis B surface antigen (HBsAg). In all studied cases, the lack of reactivity of the anti-HBs/P25 antibodies in blots from reduced SDS gels confirms that the S-related-determinants have a conformation sensitive to denaturing agents. In contrast, the anti-pre-S(2)/GP33-GP36 antibodies and the anti-pre-S(1)/P39-GP42 antibodies can be easily detected in WIBA, providing these antibodies recognize the disulfide-bond independent pre-S determinants on the denatured env proteins. However, antisera raised in guinea-pigs against individual HBsAg polypeptides contain antibodies reacting with denatured S-proteins, suggesting that the sequential S-determinants are lost during HBV morphogenesis. Antibody responses in HBV convalescing patients or vaccinated healthy donors are shown to be characterized by: an early transient polypeptide specific-antibody response to pre-S(2)-sequences (detected in WIBA); a persistent antibody response to conformation-dependent S-determinants (detected in RIA). This implies that effective long-term protection against HBV infection requires antibodies directed to native env proteins.
PLOS ONE | 2011
Andrea Cerutti; Patrick Maillard; Rosalba Minisini; Pierre-Olivier Vidalain; Farzin Roohvand; Eve-Isabelle Pécheur; Mario Pirisi; Agata Budkowska
Hepatitis C virus (HCV) infection is a major cause of chronic liver disease worldwide. HCV core protein is involved in nucleocapsid formation, but it also interacts with multiple cytoplasmic and nuclear molecules and plays a crucial role in the development of liver disease and hepatocarcinogenesis. The core protein is found mostly in the cytoplasm during HCV infection, but also in the nucleus in patients with hepatocarcinoma and in core-transgenic mice. HCV core contains nuclear localization signals (NLS), but no nuclear export signal (NES) has yet been identified. We show here that the aa(109–133) region directs the translocation of core from the nucleus to the cytoplasm by the CRM-1-mediated nuclear export pathway. Mutagenesis of the three hydrophobic residues (L119, I123 and L126) in the identified NES or in the sequence encoding the mature core aa(1–173) significantly enhanced the nuclear localisation of the corresponding proteins in transfected Huh7 cells. Both the NES and the adjacent hydrophobic sequence in domain II of core were required to maintain the core protein or its fragments in the cytoplasmic compartment. Electron microscopy studies of the JFH1 replication model demonstrated that core was translocated into the nucleus a few minutes after the virus entered the cell. The blockade of nucleocytoplasmic export by leptomycin B treatment early in infection led to the detection of core protein in the nucleus by confocal microscopy and coincided with a decrease in virus replication. Our data suggest that the functional NLS and NES direct HCV core protein shuttling between the cytoplasmic and nuclear compartments, with at least some core protein transported to the nucleus. These new properties of HCV core may be essential for virus multiplication and interaction with nuclear molecules, influence cell signaling and the pathogenesis of HCV infection.
PLOS ONE | 2011
Agata Budkowska; Athanassios Kakkanas; Eric Nerrienet; Olga Kalinina; Patrick Maillard; Srey Viseth Horm; Geena Dalagiorgou; Niki Vassilaki; Urania Georgopoulou; Michelle Martinot; Amadou A. Sall; Penelope Mavromara
The biological role of the protein encoded by the alternative open reading frame (core+1/ARF) of the Hepatitis C virus (HCV) genome remains elusive, as does the significance of the production of corresponding antibodies in HCV infection. We investigated the prevalence of anti-core and anti-core+1/ARFP antibodies in HCV-positive blood donors from Cambodia, using peptide and recombinant protein-based ELISAs. We detected unusual serological profiles in 3 out of 58 HCV positive plasma of genotype 1a. These patients were negative for anti-core antibodies by commercial and peptide-based assays using C-terminal fragments of core but reacted by Western Blot with full-length core protein. All three patients had high levels of anti-core+1/ARFP antibodies. Cloning of the cDNA that corresponds to the core-coding region from these sera resulted in the expression of both core and core+1/ARFP in mammalian cells. The core protein exhibited high amino-acid homology with a consensus HCV1a sequence. However, 10 identical synonymous mutations were found, and 7 were located in the aa(99–124) region of core. All mutations concerned the third base of a codon, and 5/10 represented a T>C mutation. Prediction analyses of the RNA secondary structure revealed conformational changes within the stem-loop region that contains the core+1/ARFP internal AUG initiator at position 85/87. Using the luciferase tagging approach, we showed that core+1/ARFP expression is more efficient from such a sequence than from the prototype HCV1a RNA. We provide additional evidence of the existence of core+1/ARFP in vivo and new data concerning expression of HCV core protein. We show that HCV patients who do not produce normal anti-core antibodies have unusually high levels of antit-core+1/ARFP and harbour several identical synonymous mutations in the core and core+1/ARFP coding region that result in major changes in predicted RNA structure. Such HCV variants may favour core+1/ARFP production during HCV infection.
Virology | 2008
Stéphane Chevaliez; Jean Balanant; Patrick Maillard; Yu-Chun Lone; François A. Lemonnier; Francis Delpeyroux
Several echoviruses use decay accelerating factor (DAF) as a cell surface receptor. However, most of them require additional cell surface coreceptors. We investigated the respective roles of DAF and class I human leukocyte antigen (HLA) molecules in the early steps of the echovirus 11 (EV11) lifecycle in rhabdomyosarcoma (RD) cells. EV11 infection was inhibited at an early stage by anti-beta2-microglobulin (beta2m) and anti-HLA monoclonal antibodies and by a soluble monochain HLA class I molecule. Expression of class I HLA molecules restored the early steps of the EV11 lifecycle, but its expression was not sufficient for EV11 replication and particle production. Expression of HLA class I molecules was associated with leukocyte cell line permissiveness to EV11 infection. In conclusion, HLA class I molecules are involved in the early steps of EV11 infection of RD cells and appear to participate in a complex interplay of surface molecules acting as coreceptors, including DAF.
BMC Genomics | 2017
Paulina Jackowiak; Anna Hojka-Osinska; Anna Philips; Agnieszka Zmienko; Lucyna Budzko; Patrick Maillard; Agata Budkowska; Marek Figlerowicz
BackgroundA pool of small RNA fragments (RFs) derived from diverse cellular RNAs has recently emerged as a rich source of functionally relevant molecules. Although their formation and accumulation has been connected to various stress conditions, the knowledge on RFs produced upon viral infections is very limited. Here, we applied the next generation sequencing (NGS) to characterize RFs generated in the hepatitis C virus (HCV) cell culture model (HCV-permissive Huh-7.5 cell line).ResultsWe found that both infected and non-infected cells contained a wide spectrum of RFs derived from virtually all RNA classes. A significant fraction of identified RFs accumulated to similar levels as miRNAs. Our analysis, focused on RFs originating from constitutively expressed non-coding RNAs, revealed three major patterns of parental RNA cleavage. We found that HCV infection induced significant changes in the accumulation of low copy number RFs, while subtly altered the levels of high copy number ones. Finally, the candidate RFs potentially relevant for host-virus interactions were identified.ConclusionsOur results indicate that RFs should be considered an important component of the Huh-7.5 transcriptome and suggest that the main factors influencing the RF biogenesis are the RNA structure and RNA protection by interacting proteins. The data presented here significantly complement the existing transcriptomic, miRnomic, proteomic and metabolomic characteristics of the HCV cell culture model.
Journal of Clinical Virology | 2010
Richard Njouom; Eric Nerrienet; Agata Budkowska; Patrick Maillard; Dominique Rousset; Olga Kalinina; Penelope Mavromara
BACKGROUND According to previous data, the antibodies produced during natural hepatitis C virus (HCV) infection frequently recognize amino acids 10-43 in the core protein and 1689-1740 or 1921-1940 in the non-structural 4B (NS4B) protein. The reactivity of these peptides with the corresponding antibodies has mainly been evaluated using serum samples from Western countries where HCV genotype 1 (HCV-1) is predominant, and no information is available concerning samples from sub-Saharan countries where high HCV variability has been reported. OBJECTIVE OF THIS STUDY: To evaluate the performance of HCV core and NS4B peptide-based immunoassays in the serodiagnosis of HCV infection in Cameroon subjects. STUDY DESIGN Three core and four NS4B-based synthetic peptides derived from HCV genotypes 1b and 2a were designed and tested against a panel of 151 serum samples from Cameroon (40 positive for HCV-1, 32 for HCV-2, 39 HCV-4, and 40 HCV-negative). RESULTS The three core peptides all demonstrated strong immunoreactivity, regardless of the HCV genotype from which they were derived, with greater than 90% and 92% sensitivity and specificity. In contrast, the NS4B-derived peptides exhibited lower sensitivities (24.3-65.8% depending on the HCV genotype) but higher specificities (100% for all four peptides tested). CONCLUSIONS Our findings indicate that an HCV core peptide could be used for the diagnosis of chronic HCV infection. Among the NS4B peptides tested, a chimeric NS4B peptide encompassing both N- and C-terminal portions of the NS4B protein gave a much better performance than the two component N- and C-terminal peptides used individually.
Cellular Microbiology | 2007
Ursula Andréo; Patrick Maillard; Olga Kalinina; Marine Walic; Eliane F. Meurs; Michèle Martinot; Patrick Marcellin; Agata Budkowska