Patrick Mardulyn
Université libre de Bruxelles
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Patrick Mardulyn.
Systematic Biology | 2001
Sydney A. Cameron; Patrick Mardulyn
Different views of the pattern of social evolution among the highly eusocial bees have arisen as a result of discordance between past molecular and morphology-based phylogenies. Here we present new data and taxa for four molecular data sets and reassess the morphological characters available to date. We show there is no significant character incongruence between four molecular data sets (two nuclear and two mitochondrial), but highly significant character incongruence leads to topological incongruence between the molecular and morphological data. We investigate the effects of using different outgroup combinations to root the estimated tree. We also consider various ways in which biases in the sequence data could be misleading, using several maximum likelihood models, LogDet corrections, and spectral analyses. Ultimately, we concede there is strong discordance between the molecular and morphological data partitions and appropriately apply the conditional combination approach in this case. We also find two equally well supported placements of the root for the molecular trees, one supported by 16S and 28S sequences, the other supported by cytochrome b and opsin. The strength of the evidence leads us to accept two equally well supported hypotheses based on analyses of the molecular data sets. These are the most rigorously supported hypotheses of corbiculate bee relationships at this time, and frame our argument that highly eusocial behavior within the corbiculate bees evolved twice independently.
Evolution | 1996
Susanne Dobler; Patrick Mardulyn; Jacques Pasteels; Martine Rowell-Rahier
Insect‐plant interactions have played a prominent role in investigating phylogenetic constraints in the evolution of ecological traits. The patterns of host association among specialized insects have often been described as highly conservative, yet not all specialized herbivorous insect lineages display the same degree of fidelity to their host plants. In this paper, we present an estimate of the evolutionary history of the leaf beetle genus Oreina. This genus displays an amazing flexibility in several aspects of its ecology and life history: (1) host plant switches in Oreina occurred between plant families or distantly related tribes within families and thereby to more distantly related plants than in several model systems that have contributed to the idea of parallel cladogenesis; (2) all species of the genus are chemically defended, but within the genus a transition between autogenous production of defensive toxins and sequestration of secondary plant compounds has occurred; and (3) reproductive strategies in the genus range from oviparity to viviparity including all intermediates that could allow the gradual evolution of viviparity. Cladistic analysis of 18 allozyme loci found two most parsimonious trees that differ only in the branching of one species. According to this phylogeny estimate, Oreina species were originally associated with Asteraceae, with an inclusion of Apiaceae in the diet of one oligophagous species and an independent switch to Apiaceae in a derived clade. The original mode of defense appears to be the autogenous production of cardenolides as previously postulated; the additional sequestration of pyrrolizidine alkaloids could have either originated at the base of the genus or have arisen three times independently in all species that switched to plants containing these compounds. Viviparity apparently evolved twice in the genus, once without matrotrophy, through a retention of the eggs inside the females oviducts, and once in combination with matrotrophy. We hypothesize that the combination of autogenous defense and a life history that involves mobile externally feeding larvae allowed these beetles to switch host plants more readily than has been reported for highly conservative systems.
Proceedings of the Royal Society of London. Series B, Biological Sciences | 2000
Igor Eeckhaut; Damhnait McHugh; Patrick Mardulyn; Ralph Tiedemann; Daniel Monteyne; Michel Jangoux; Michel C. Milinkovitch
Myzostomids are obligate symbiotic invertebrates associated with echinoderms with a fossil record that extends to the Ordovician period. Due to their long history as host–specific symbionts, myzostomids have acquired a unique anatomy that obscures their phylogenetic affinities to other metazoans: they are incompletely segmented, parenchymous, acoelomate organisms with chaetae and a trochophore larva. Today, they are most often classified within annelids either as an aberrant family of polychaetes or as a separate class. We inferred the phylogenetic position of the Myzostomida by analysing the DNA sequences of two slowly evolving nuclear genes: the small subunit ribosomal RNA and elongation factor–1α. All our analyses congruently indicated that myzostomids are not annelids but suggested instead that they are more closely related to flatworms than to any trochozoan taxon. These results, together with recent analyses of the myzostomidan ultrastructure, have significant implications for understanding the evolution of metazoan body plans, as major characters (segmentation, coeloms, chaetae and trochophore larvae) might have been independently lost or gained in different animal phyla.
Nucleic Acids Research | 2016
Nicolas Dierckxsens; Patrick Mardulyn; Guillaume Smits
Abstract The evolution in next-generation sequencing (NGS) technology has led to the development of many different assembly algorithms, but few of them focus on assembling the organelle genomes. These genomes are used in phylogenetic studies, food identification and are the most deposited eukaryotic genomes in GenBank. Producing organelle genome assembly from whole genome sequencing (WGS) data would be the most accurate and least laborious approach, but a tool specifically designed for this task is lacking. We developed a seed-and-extend algorithm that assembles organelle genomes from whole genome sequencing (WGS) data, starting from a related or distant single seed sequence. The algorithm has been tested on several new (Gonioctena intermedia and Avicennia marina) and public (Arabidopsis thaliana and Oryza sativa) whole genome Illumina data sets where it outperforms known assemblers in assembly accuracy and coverage. In our benchmark, NOVOPlasty assembled all tested circular genomes in less than 30 min with a maximum memory requirement of 16 GB and an accuracy over 99.99%. In conclusion, NOVOPlasty is the sole de novo assembler that provides a fast and straightforward extraction of the extranuclear genomes from WGS data in one circular high quality contig. The software is open source and can be downloaded at https://github.com/ndierckx/NOVOPlasty.
Vaccine | 2008
Pierre R. Smeesters; Patrick Mardulyn; Anne Vergison; Raphaël Leplae; Laurence Van Melderen
Group A Streptococci (GAS) are classified into 180 emm-types based on the sequence of the amino-terminal hyper-variable region of the M surface protein. The genetic relatedness of the whole surface-exposed part of M was investigated in well-characterized Belgian and Brazilian GAS isolates which belong to different epidemiological and clinical landscapes. Despite a small number of different emm-types and an apparent low diversity in the Belgian isolates (as revealed by the emm-typing method), our data showed that the overall genetic diversity of the M proteins was higher than expected. On the contrary, the M proteins from the Brazilian isolates were genetically highly related. Since M is a multi-functional protein, an analysis of the whole surface-exposed sequence that takes into account the different functional domains may provide tools for typing as well as for analyzing the molecular mechanisms of M virulence or defining vaccine strategies.
Systematic Entomology | 2002
James B. Whitfield; Patrick Mardulyn; Andrew D. Austin; Mark Dowton
Abstract Phylogenetic relationships among the genera of the large braconid wasp subfamily Microgastrinae were explored using DNA sequence data from the mitochondrial large ribosomal subunit (16S), nuclear large ribosomal subunit (28S) and mitochondrial cytochrome oxidase (COI) genes, along with morphological characters, both new and from previous studies. The taxonomic history of this group of wasps is reviewed, along with a critique of previous phylogenetic studies on the group. Molecular data were sampled from forty‐six species representing twenty‐six genera of microgastrines, plus three species representing the close outgroup taxa Cardiochilinae and Miracinae. Some 2300 base pairs of aligned sequence were obtained per taxon from the three genes. In addition, fifty‐three morphological characters were coded for all known genera, including two undescribed genera, except Semionis Nixon (known from only a single male type specimen). Relationships among several groups of genera are clarified and challenge some major assumptions made in earlier classifications. In particular, it is clear that dependence on one or a few major morphological character systems oversimplifies relationships, and can lead to misleading results. Despite the large amount of data analysed, basal divergences within the subfamily remain poorly resolved and essentially unsupported in any rigorous statistical sense.
Evolution | 2009
Patrick Mardulyn; Yuri E. Mikhailov; Jacques Pasteels
Few studies to date have investigated the impact of Pleistocene climatic oscillations on the genetic diversity of cold-adapted species. We focus on the geographic distribution of genetic diversity in a Euro-Siberian boreo-montane leaf beetle, Gonioctena pallida. We present the molecular variation from three independent gene fragments over the entire geographic range of this insect. The observed sequence variation identifies a genetic diversity hot spot in the Carpathian Mountains, in central Europe, which reveals the presence of (1) an ancestral refuge population or (2) a secondary contact zone in this area. Modeling of population evolution in a coalescent framework allowed us to favor the ancestral refuge hypothesis. These analyses suggest that the Carpathian Mountains served as a refuge for G. pallida, whereas the rest of the species distribution, that spans a large portion of Europe and Asia, experienced a dramatic reduction in genetic variation probably associated to bottlenecks and/or founder events. We estimated the time of isolation of the ancestral refuge population, using an approximate Bayesian method, to be larger than 90,000 years. If true, the current pattern of genetic variation in this cold-adapted organism was shaped by a climatic event predating by far the end of the last ice age.
Molecular Ecology | 2001
Patrick Mardulyn
The pattern of genetic variation in the leaf beetle Gonioctena pallida was investigated inside the Vosges mountains using a highly variable 363 bp DNA fragment of the mitochondrial control region. Sequencing of 242 individuals, sampled in a geographical area of 100 × 40 km, identified 61 haplotypes whose genealogy was inferred. The resulting haplotype network exhibits four star‐like phylogenies, two of which may be indicative of a population having recently expanded in size from a small number of founders. Nested clade analysis suggested multiple past expansion events, but also isolation by distance and possibly past fragmentation events, as the causes of the detected geographical associations of haplotypes. These results indicate the existence of effective barriers to gene flow inside the investigated area. Because the oldest demographic events inferred in the nested clade analysis were identified as expansion events, we hypothesize that a small population of founders have expanded not only in size, but also in geographical range from the south towards the north and east of the Vosges.
Systematic Biology | 2015
Jairo Patiño; Mark A. Carine; Patrick Mardulyn; Nicolas Devos; Rubén G. Mateo; Juana M. González-Mancebo; A. Jonathan Shaw; Alain Vanderpoorten
The perceived low levels of genetic diversity, poor interspecific competitive and defensive ability, and loss of dispersal capacities of insular lineages have driven the view that oceanic islands are evolutionary dead ends. Focusing on the Atlantic bryophyte flora distributed across the archipelagos of the Azores, Madeira, the Canary Islands, Western Europe, and northwestern Africa, we used an integrative approach with species distribution modeling and population genetic analyses based on approximate Bayesian computation to determine whether this view applies to organisms with inherent high dispersal capacities. Genetic diversity was found to be higher in island than in continental populations, contributing to mounting evidence that, contrary to theoretical expectations, island populations are not necessarily genetically depauperate. Patterns of genetic variation among island and continental populations consistently fitted those simulated under a scenario of de novo foundation of continental populations from insular ancestors better than those expected if islands would represent a sink or a refugium of continental biodiversity. We, suggest that the northeastern Atlantic archipelagos have played a key role as a stepping stone for transoceanic migrants. Our results challenge the traditional notion that oceanic islands are the end of the colonization road and illustrate the significant role of oceanic islands as reservoirs of novel biodiversity for the assembly of continental floras.
New Phytologist | 2010
Virginie Hutsemekers; Olivier J. Hardy; Patrick Mardulyn; A. J. Shaw; Alain Vanderpoorten
Genetic diversity and structure are described in the aquatic moss Platyhypnidium riparioides to assess its dispersal ability at a regional scale and to determine whether patterns of genetic differentiation correlate with environmental variation. Variation at six nuclear microsatellite loci from 50 populations in southern Belgium was investigated through Mantel tests, partial Mantel tests and spatial analysis of molecular variance. Overall patterns of genotypic variation showed strong differentiation among populations at a regional scale (F(ST) = 0.57). The high values of F(IS) observed within populations at both the ramet and genet levels, and the higher proportion of ramets with the same genotype than expected by chance, all point to a strongly clonal or selfing mating system. A genetic discontinuity was identified between northern and southern groups of populations. Within each group, F(ST) and geographical distances were significantly correlated. Partial Mantel tests suggest that genetic and ecological distances are significantly correlated in the southern group. The results point to strong dispersal limitation at the landscape scale and suggest that the southern and northern groups experienced different histories. Within the former, the correlation between genetic and ecological variation is suggestive of reproductive isolation among ecotypes.