Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrick Mavingui is active.

Publication


Featured researches published by Patrick Mavingui.


Parasites & Vectors | 2013

Diversity and function of bacterial microbiota in the mosquito holobiont

Guillaume Minard; Patrick Mavingui; Claire Valiente Moro

Mosquitoes (Diptera: Culicidae) have been shown to host diverse bacterial communities that vary depending on the sex of the mosquito, the developmental stage, and ecological factors. Some studies have suggested a potential role of microbiota in the nutritional, developmental and reproductive biology of mosquitoes. Here, we present a review of the diversity and functions of mosquito-associated bacteria across multiple variation factors, emphasizing recent findings. Mosquito microbiota is considered in the context of possible extended phenotypes conferred on the insect hosts that allow niche diversification and rapid adaptive evolution in other insects. These kinds of observations have prompted the recent development of new mosquito control methods based on the use of symbiotically-modified mosquitoes to interfere with pathogen transmission or reduce the host life span and reproduction. New opportunities for exploiting bacterial function for vector control are highlighted.


PLOS Genetics | 2011

Azospirillum Genomes Reveal Transition of Bacteria from Aquatic to Terrestrial Environments

Florence Wisniewski-Dyé; Kirill Borziak; Gurusahai Khalsa-Moyers; Gladys Alexandre; Leonid O. Sukharnikov; Kristin Wuichet; Gregory B. Hurst; W. Hayes McDonald; Jon S. Robertson; Valérie Barbe; Alexandra Calteau; Zoé Rouy; Sophie Mangenot; Claire Prigent-Combaret; Philippe Normand; Mickaël Boyer; Patricia Siguier; Yves Dessaux; Claudine Elmerich; Guy Condemine; Ganisan Krishnen; Ivan R. Kennedy; Andrew H. Paterson; Víctor González; Patrick Mavingui; Igor B. Zhulin

Fossil records indicate that life appeared in marine environments ∼3.5 billion years ago (Gyr) and transitioned to terrestrial ecosystems nearly 2.5 Gyr. Sequence analysis suggests that “hydrobacteria” and “terrabacteria” might have diverged as early as 3 Gyr. Bacteria of the genus Azospirillum are associated with roots of terrestrial plants; however, virtually all their close relatives are aquatic. We obtained genome sequences of two Azospirillum species and analyzed their gene origins. While most Azospirillum house-keeping genes have orthologs in its close aquatic relatives, this lineage has obtained nearly half of its genome from terrestrial organisms. The majority of genes encoding functions critical for association with plants are among horizontally transferred genes. Our results show that transition of some aquatic bacteria to terrestrial habitats occurred much later than the suggested initial divergence of hydro- and terrabacterial clades. The birth of the genus Azospirillum approximately coincided with the emergence of vascular plants on land.


Acta Tropica | 2014

Harnessing mosquito-Wolbachia symbiosis for vector and disease control

Kostas Bourtzis; Stephen L. Dobson; Zhiyong Xi; Jason L. Rasgon; Maurizio Calvitti; Luciano Andrade Moreira; Hervé C. Bossin; Riccardo Moretti; Luke Anthony Baton; Grant L. Hughes; Patrick Mavingui; Jeremie R.L. Gilles

Mosquito species, members of the genera Aedes, Anopheles and Culex, are the major vectors of human pathogens including protozoa (Plasmodium sp.), filariae and of a variety of viruses (causing dengue, chikungunya, yellow fever, West Nile). There is lack of efficient methods and tools to treat many of the diseases caused by these major human pathogens, since no efficient vaccines or drugs are available; even in malaria where insecticide use and drug therapies have reduced incidence, 219 million cases still occurred in 2010. Therefore efforts are currently focused on the control of vector populations. Insecticides alone are insufficient to control mosquito populations since reduced susceptibility and even resistance is being observed more and more frequently. There is also increased concern about the toxic effects of insecticides on non-target (even beneficial) insect populations, on humans and the environment. During recent years, the role of symbionts in the biology, ecology and evolution of insect species has been well-documented and has led to suggestions that they could potentially be used as tools to control pests and therefore diseases. Wolbachia is perhaps the most renowned insect symbiont, mainly due to its ability to manipulate insect reproduction and to interfere with major human pathogens thus providing new avenues for pest control. We herein present recent achievements in the field of mosquito-Wolbachia symbiosis with an emphasis on Aedes albopictus. We also discuss how Wolbachia symbiosis can be harnessed for vector control as well as the potential to combine the sterile insect technique and Wolbachia-based approaches for the enhancement of population suppression programs.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Antibiotic-resistant soil bacteria in transgenic plant fields

Sandrine Demanèche; Hervé Sanguin; John Poté; Elisabeth Navarro; Dominique Bernillon; Patrick Mavingui; Walter Wildi; Timothy M. Vogel; Pascal Simonet

Understanding the prevalence and polymorphism of antibiotic resistance genes in soil bacteria and their potential to be transferred horizontally is required to evaluate the likelihood and ecological (and possibly clinical) consequences of the transfer of these genes from transgenic plants to soil bacteria. In this study, we combined culture-dependent and -independent approaches to study the prevalence and diversity of bla genes in soil bacteria and the potential impact that a 10-successive-year culture of the transgenic Bt176 corn, which has a blaTEM marker gene, could have had on the soil bacterial community. The bla gene encoding resistance to ampicillin belongs to the beta-lactam antibiotic family, which is widely used in medicine but is readily compromised by bacterial antibiotic resistance. Our results indicate that soil bacteria are naturally resistant to a broad spectrum of beta-lactam antibiotics, including the third cephalosporin generation, which has a slightly stronger discriminating effect on soil isolates than other cephalosporins. These high resistance levels for a wide range of antibiotics are partly due to the polymorphism of bla genes, which occur frequently among soil bacteria. The blaTEM116 gene of the transgenic corn Bt176 investigated here is among those frequently found, thus reducing any risk of introducing a new bacterial resistance trait from the transgenic material. In addition, no significant differences were observed in bacterial antibiotic-resistance levels between transgenic and nontransgenic corn fields, although the bacterial populations were different.


PLOS Pathogens | 2009

Wolbachia Interferes with Ferritin Expression and Iron Metabolism in Insects

Natacha Kremer; Denis Voronin; Delphine Charif; Patrick Mavingui; Bertrand Mollereau; Fabrice Vavre

Wolbachia is an intracellular bacterium generally described as being a facultative reproductive parasite. However, Wolbachia is necessary for oogenesis completion in the wasp Asobara tabida. This dependence has evolved recently as a result of interference with apoptosis during oogenesis. Through comparative transcriptomics between symbiotic and aposymbiotic individuals, we observed a differential expression of ferritin, which forms a complex involved in iron storage. Iron is an essential element that is in limited supply in the cell. However, it is also a highly toxic precursor of Reactive Oxygen Species (ROS). Ferritin has also been shown to play a key role in host–pathogen interactions. Measuring ferritin by quantitative RT-PCR, we confirmed that ferritin was upregulated in aposymbiotic compared to symbiotic individuals. Manipulating the iron content in the diet, we showed that iron overload markedly affected wasp development and induced apoptotic processes during oogenesis in A. tabida, suggesting that the regulation of iron homeostasis may also be related to the obligate dependence of the wasp. Finally, we demonstrated that iron metabolism is influenced by the presence of Wolbachia not only in the obligate mutualism with A. tabida, but also in facultative parasitism involving Drosophila simulans and in Aedes aegypti cells. In these latter cases, the expression of Wolbachia bacterioferritin was also increased in the presence of iron, showing that Wolbachia responds to the concentration of iron. Our results indicate that Wolbachia may generally interfere with iron metabolism. The high affinity of Wolbachia for iron might be due to physiological requirement of the bacterium, but it could also be what allows the symbiont to persist in the organism by reducing the labile iron concentration, thus protecting the cell from oxidative stress and apoptosis. These findings also reinforce the idea that pathogenic, parasitic and mutualistic intracellular bacteria all use the same molecular mechanisms to survive and replicate within host cells. By impacting the general physiology of the host, the presence of a symbiont may select for host compensatory mechanisms, which extends the possible consequences of persistent endosymbiont on the evolution of their hosts.


PLOS Neglected Tropical Diseases | 2012

The native Wolbachia symbionts limit transmission of dengue virus in Aedes albopictus.

Laurence Mousson; Karima Zouache; Camilo Arias-Goeta; Vincent Raquin; Patrick Mavingui; Anna-Bella Failloux

Background The chikungunya (CHIK) outbreak that struck La Reunion Island in 2005 was preceded by few human cases of Dengue (DEN), but which surprisingly did not lead to an epidemic as might have been expected in a non-immune population. Both arboviral diseases are transmitted to humans by two main mosquito species, Aedes aegypti and Aedes albopictus. In the absence of the former, Ae. albopictus was the only species responsible for viral transmission on La Reunion Island. This mosquito is naturally super-infected with two Wolbachia strains, wAlbA and wAlbB. While Wolbachia does not affect replication of CHIK virus (CHIKV) in Ae. albopictus, a similar effect was not observed with DEN virus (DENV). Methods/Principal Findings To understand the weak vectorial status of Ae. albopictus towards DENV, we used experimental oral infections of mosquitoes from La Reunion Island to characterize the impact of Wolbachia on DENV infection. Viral loads and Wolbachia densities were measured by quantitative PCR in different organs of Ae. albopictus where DENV replication takes place after ingestion. We found that: (i) Wolbachia does not affect viral replication, (ii) Wolbachia restricts viral density in salivary glands, and (iii) Wolbachia limits transmission of DENV, as infectious viral particles were only detected in the saliva of Wolbachia-uninfected Ae. albopictus, 14 days after the infectious blood-meal. Conclusions We show that Wolbachia does not affect the replication of DENV in Ae. albopictus. However, Wolbachia is able to reduce viral infection of salivary glands and limit transmission, suggesting a role of Wolbachia in naturally restricting the transmission of DENV in Ae. albopictus from La Reunion Island. The extension of this conclusion to other Ae. albopictus populations should be investigated.


Journal of Bacteriology | 2002

Dynamics of Genome Architecture in Rhizobium sp. Strain NGR234

Patrick Mavingui; Margarita Flores; Xianwu Guo; Guillermo Dávila; Xavier Perret; William J. Broughton; Rafael Palacios

Bacterial genomes are usually partitioned in several replicons, which are dynamic structures prone to mutation and genomic rearrangements, thus contributing to genome evolution. Nevertheless, much remains to be learned about the origins and dynamics of the formation of bacterial alternative genomic states and their possible biological consequences. To address these issues, we have studied the dynamics of the genome architecture in Rhizobium sp. strain NGR234 and analyzed its biological significance. NGR234 genome consists of three replicons: the symbiotic plasmid pNGR234a (536,165 bp), the megaplasmid pNGR234b (>2,000 kb), and the chromosome (>3,700 kb). Here we report that genome analyses of cell siblings showed the occurrence of large-scale DNA rearrangements consisting of cointegrations and excisions between the three replicons. As a result, four new genomic architectures have emerged. Three consisted of the cointegrates between two replicons: chromosome-pNGR234a, chromosome-pNGR234b, and pNGR234a-pNGR234b. The other consisted of a cointegrate of the three replicons (chromosome-pNGR234a-pNGR234b). Cointegration and excision of pNGR234a with either the chromosome or pNGR234b were studied and found to proceed via a Campbell-type mechanism, mediated by insertion sequence elements. We provide evidence showing that changes in the genome architecture did not alter the growth and symbiotic proficiency of Rhizobium derivatives.


Molecular Ecology | 2010

Wolbachia modulates Chikungunya replication in Aedes albopictus

Laurence Mousson; Estelle Martin; Karima Zouache; Yoann Madec; Patrick Mavingui; Anna-Bella Failloux

The Aedes albopictus mosquito has been involved as the principal vector of recent major outbreaks due to the chikungunya virus (CHIKV). The species is naturally infected by two strains of Wolbachia (wAlbA and wAlbB). Wolbachia infections are thought to have spread by manipulating the reproduction of their hosts; cytoplasmic incompatibility is the mechanism used by Wolbachia to invade natural populations of many insects including Ae. albopictus. Here, we report a study on the effects of removing Wolbachia from Ae. albopictus on CHIKV replication and examine the consequences of CHIKV infection on some life‐history traits (survival and reproduction) of Wolbachia‐free Ae. albopictus. We found that Wolbachia‐free mosquitoes maintained a highly heterogeneous CHIKV replication compared to Wolbachia‐infected individuals. In Wolbachia‐infected Ae. albopictus, the regular increase of CHIKV followed by a steady viral load from day 4 post‐infection onwards was concomitant with a decline in Wolbachia density. This profile was also detected when examining the two key organs for viral transmission, the midgut and the salivary glands. Moreover, Wolbachia‐free Ae. albopictus was not altered in life‐history traits such as survival, oviposition and hatching characteristics whether infected or not with CHIKV. We found that Wolbachia is not essential for viral replication, its presence could lead to optimize replication from day 4 post‐infection onwards, coinciding with a decrease in Wolbachia density. Wolbachia may regulate viral replication in Ae. albopictus, with consequences on survival and reproduction.


PLOS ONE | 2009

Persistent Wolbachia and Cultivable Bacteria Infection in the Reproductive and Somatic Tissues of the Mosquito Vector Aedes albopictus

Karima Zouache; Denis Voronin; Van Tran-Van; Laurence Mousson; Anna-Bella Failloux; Patrick Mavingui

Background Commensal and symbiotic microbes have a considerable impact on the behavior of many arthropod hosts, including hematophagous species that transmit pathogens causing infectious diseases to human and animals. Little is known about the bacteria associated with mosquitoes other than the vectorized pathogens. This study investigated Wolbachia and cultivable bacteria that persist through generations in Ae. albopictus organs known to host transmitted arboviruses, such as dengue and chikungunya. Methodology/Principal Findings We used culturing, diagnostic and quantitative PCR, as well as in situ hybridization, to detect and locate bacteria in whole individual mosquitoes and in dissected tissues. Wolbachia, cultivable bacteria of the genera Acinetobacter, Comamonas, Delftia and Pseudomonas co-occurred and persisted in the bodies of both males and females of Ae. albopictus initially collected in La Réunion during the chikungunya outbreak, and maintained as colonies in insectaries. In dissected tissues, Wolbachia and the cultivable Acinetobacter can be detected in the salivary glands. The other bacteria are commonly found in the gut. Quantitative PCR estimates suggest that Wolbachia densities are highest in ovaries, lower than those of Acinetobacter in the gut, and approximately equal to those of Acinetobacter in the salivary glands. Hybridization using specific fluorescent probes successfully localized Wolbachia in all germ cells, including the oocytes, and in the salivary glands, whereas the Acinetobacter hybridizing signal was mostly located in the foregut and in the anterior midgut. Conclusions/Significance Our results show that Proteobacteria are distributed in the somatic and reproductive tissues of mosquito where transmissible pathogens reside and replicate. This location may portend the coexistence of symbionts and pathogens, and thus the possibility that competition or cooperation phenomena may occur in the mosquito vector Ae. albopictus. Improved understanding of the vectorial system, including the role of bacteria in the vectors biology and competence, could have major implications for understanding viral emergences and for disease control.


BMC Microbiology | 2012

Influence of Wolbachia on host gene expression in an obligatory symbiosis

Natacha Kremer; Delphine Charif; Hélène Henri; Frédérick Gavory; Patrick Wincker; Patrick Mavingui; Fabrice Vavre

BackgroundWolbachia are intracellular bacteria known to be facultative reproductive parasites of numerous arthropod hosts. Apart from these reproductive manipulations, recent findings indicate that Wolbachia may also modify the host’s physiology, notably its immune function. In the parasitoid wasp, Asobara tabida, Wolbachia is necessary for oogenesis completion, and aposymbiotic females are unable to produce viable offspring. The absence of egg production is also associated with an increase in programmed cell death in the ovaries of aposymbiotic females, suggesting that a mechanism that ensures the maintenance of Wolbachia in the wasp could also be responsible for this dependence. In order to decipher the general mechanisms underlying host-Wolbachia interactions and the origin of the dependence, we developed transcriptomic approaches to compare gene expression in symbiotic and aposymbiotic individuals.ResultsAs no genetic data were available on A. tabida, we constructed several Expressed Sequence Tags (EST) libraries, and obtained 12,551 unigenes from this species. Gene expression was compared between symbiotic and aposymbiotic ovaries through in silico analysis and in vitro subtraction (SSH). As pleiotropic functions involved in immunity and development could play a major role in the establishment of dependence, the expression of genes involved in oogenesis, programmed cell death (PCD) and immunity (broad sense) was analyzed by quantitative RT-PCR. We showed that Wolbachia might interfere with these numerous biological processes, in particular some related to oxidative stress regulation. We also showed that Wolbachia may interact with immune gene expression to ensure its persistence within the host.ConclusionsThis study allowed us to constitute the first major dataset of the transcriptome of A. tabida, a species that is a model system for both host/Wolbachia and host/parasitoid interactions. More specifically, our results highlighted that symbiont infection may interfere with numerous pivotal processes at the individual level, suggesting that the impact of Wolbachia should also be investigated beyond reproductive manipulations.

Collaboration


Dive into the Patrick Mavingui's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Margarita Flores

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Karima Zouache

Claude Bernard University Lyon 1

View shared research outputs
Top Co-Authors

Avatar

Rafael Palacios

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge