Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrick McTamney is active.

Publication


Featured researches published by Patrick McTamney.


Nature | 2013

Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies.

Masaru Kanekiyo; Chih Jen Wei; Hadi M. Yassine; Patrick McTamney; Jeffrey C. Boyington; James R. R. Whittle; Srinivas S. Rao; Wing Pui Kong; Lingshu Wang; Gary J. Nabel

Influenza viruses pose a significant threat to the public and are a burden on global health systems. Each year, influenza vaccines must be rapidly produced to match circulating viruses, a process constrained by dated technology and vulnerable to unexpected strains emerging from humans and animal reservoirs. Here we use knowledge of protein structure to design self-assembling nanoparticles that elicit broader and more potent immunity than traditional influenza vaccines. The viral haemagglutinin was genetically fused to ferritin, a protein that naturally forms nanoparticles composed of 24 identical polypeptides. Haemagglutinin was inserted at the interface of adjacent subunits so that it spontaneously assembled and generated eight trimeric viral spikes on its surface. Immunization with this influenza nanoparticle vaccine elicited haemagglutination inhibition antibody titres more than tenfold higher than those from the licensed inactivated vaccine. Furthermore, it elicited neutralizing antibodies to two highly conserved vulnerable haemagglutinin structures that are targets of universal vaccines: the stem and the receptor binding site on the head. Antibodies elicited by a 1999 haemagglutinin–nanoparticle vaccine neutralized H1N1 viruses from 1934 to 2007 and protected ferrets from an unmatched 2007 H1N1 virus challenge. This structure-based, self-assembling synthetic nanoparticle vaccine improves the potency and breadth of influenza virus immunity, and it provides a foundation for building broader vaccine protection against emerging influenza viruses and other pathogens.


Nature Medicine | 2015

Hemagglutinin-stem nanoparticles generate heterosubtypic influenza protection

Hadi M. Yassine; Jeffrey C. Boyington; Patrick McTamney; Chih Jen Wei; Masaru Kanekiyo; Wing Pui Kong; John R. Gallagher; Lingshu Wang; Yi Zhang; M. Gordon Joyce; Daniel Lingwood; Syed M. Moin; Hanne Andersen; Yoshinobu Okuno; Srinivas S. Rao; Audray K. Harris; Peter D. Kwong; John R. Mascola; Gary J. Nabel; Barney S. Graham

The antibody response to influenza is primarily focused on the head region of the hemagglutinin (HA) glycoprotein, which in turn undergoes antigenic drift, thus necessitating annual updates of influenza vaccines. In contrast, the immunogenically subdominant stem region of HA is highly conserved and recognized by antibodies capable of binding multiple HA subtypes. Here we report the structure-based development of an H1 HA stem–only immunogen that confers heterosubtypic protection in mice and ferrets. Six iterative cycles of structure-based design (Gen1–Gen6) yielded successive H1 HA stabilized-stem (HA–SS) immunogens that lack the immunodominant head domain. Antigenic characterization, determination of two HA–SS crystal structures in complex with stem-specific monoclonal antibodies and cryo-electron microscopy analysis of HA–SS on ferritin nanoparticles (H1–SS–np) confirmed the preservation of key structural elements. Vaccination of mice and ferrets with H1–SS–np elicited broadly cross-reactive antibodies that completely protected mice and partially protected ferrets against lethal heterosubtypic H5N1 influenza virus challenge despite the absence of detectable H5N1 neutralizing activity in vitro. Passive transfer of immunoglobulin from H1–SS–np–immunized mice to naive mice conferred protection against H5N1 challenge, indicating that vaccine-elicited HA stem–specific antibodies can protect against diverse group 1 influenza strains.


Nature | 2012

Structural and genetic basis for development of broadly neutralizing influenza antibodies

Daniel Lingwood; Patrick McTamney; Hadi M. Yassine; James R. R. Whittle; Xiaoti Guo; Jeffrey C. Boyington; Chih-Jen Wei; Gary J. Nabel

Influenza viruses take a yearly toll on human life despite efforts to contain them with seasonal vaccines. These viruses evade human immunity through the evolution of variants that resist neutralization. The identification of antibodies that recognize invariant structures on the influenza haemagglutinin (HA) protein have invigorated efforts to develop universal influenza vaccines. Specifically, antibodies to the highly conserved stem region of HA neutralize diverse viral subtypes. These antibodies largely derive from a specific antibody gene, heavy-chain variable region IGHV1-69, after limited affinity maturation from their germline ancestors, but how HA stimulates naive B cells to mature and induce protective immunity is unknown. To address this question, we analysed the structural and genetic basis for their engagement and maturation into broadly neutralizing antibodies. Here we show that the germline-encoded precursors of these antibodies act as functional B-cell antigen receptors (BCRs) that initiate subsequent affinity maturation. Neither the germline precursor of a prototypic antibody, CR6261 (ref. 3), nor those of two other natural human IGHV1-69 antibodies, bound HA as soluble immunoglobulin-G (IgG). However, all three IGHV1-69 precursors engaged HA when the antibody was expressed as cell surface IgM. HA triggered BCR-associated tyrosine kinase signalling by germline transmembrane IgM. Recognition and virus neutralization was dependent solely on the heavy chain, and affinity maturation of CR6261 required only seven amino acids in the complementarity-determining region (CDR) H1 and framework region 3 (FR3) to restore full activity. These findings provide insight into the initial events that lead to the generation of broadly neutralizing antibodies to influenza, informing the rational design of vaccines to elicit such antibodies and providing a model relevant to other infectious diseases, including human immunodeficiency virus/AIDS. The data further suggest that selected immunoglobulin genes recognize specific protein structural ‘patterns’ that provide a substrate for further affinity maturation.


Journal of Virology | 2017

Immunization with Low Doses of Recombinant Postfusion or Prefusion Respiratory Syncytial Virus F Primes for Vaccine-Enhanced Disease in the Cotton Rat Model Independently of the Presence of a Th1-Biasing (GLA-SE) or Th2-Biasing (Alum) Adjuvant

Kirsten Schneider-Ohrum; Corinne Cayatte; Angie Snell Bennett; Gaurav Manohar Rajani; Patrick McTamney; Krystal Nacel; Leigh Hostetler; Lily Cheng; Kuishu Ren; Terrence O'Day; Gregory A. Prince; Michael P. McCarthy

ABSTRACT Respiratory syncytial virus (RSV) infection of children previously immunized with a nonlive, formalin-inactivated (FI)-RSV vaccine has been associated with serious enhanced respiratory disease (ERD). Consequently, detailed studies of potential ERD are a critical step in the development of nonlive RSV vaccines targeting RSV-naive children and infants. The fusion glycoprotein (F) of RSV in either its postfusion (post-F) or prefusion (pre-F) conformation is a target for neutralizing antibodies and therefore an attractive antigen candidate for a pediatric RSV subunit vaccine. Here, we report the evaluation of RSV post-F and pre-F in combination with glucopyranosyl lipid A (GLA) integrated into stable emulsion (SE) (GLA-SE) and alum adjuvants in the cotton rat model. Immunization with optimal doses of RSV F antigens in the presence of GLA-SE induced high titers of virus-neutralizing antibodies and conferred complete lung protection from virus challenge, with no ERD signs in the form of alveolitis. To mimic a waning immune response, and to assess priming for ERD under suboptimal conditions, an antigen dose de-escalation study was performed in the presence of either GLA-SE or alum. At low RSV F doses, alveolitis-associated histopathology was unexpectedly observed with either adjuvant at levels comparable to FI-RSV-immunized controls. This occurred despite neutralizing-antibody titers above the minimum levels required for protection and with no/low virus replication in the lungs. These results emphasize the need to investigate a pediatric RSV vaccine candidate carefully for priming of ERD over a wide dose range, even in the presence of strong neutralizing activity, Th1 bias-inducing adjuvant, and protection from virus replication in the lower respiratory tract. IMPORTANCE RSV disease is of great importance worldwide, with the highest burden of serious disease occurring upon primary infection in infants and children. FI-RSV-induced enhanced disease, observed in the 1960s, presented a major and ongoing obstacle for the development of nonlive RSV vaccine candidates. The findings presented here underscore the need to evaluate a nonlive RSV vaccine candidate during preclinical development over a wide dose range in the cotton rat RSV enhanced-disease model, as suboptimal dosing of several RSV F subunit vaccine candidates led to the priming for ERD. These observations are relevant to the validity of the cotton rat model itself and to safe development of nonlive RSV vaccines for seronegative infants and children.


Journal of Virology | 2017

Newcastle disease virus establishes persistent infection in tumor cells in vitro: contribution of the cleavage site of fusion protein and second sialic acid binding site of hemagglutinin-neuraminidase

Udaya S. Rangaswamy; Weijia Wang; Xing Cheng; Patrick McTamney; Danielle Carroll; Hong Jin

ABSTRACT Newcastle disease virus (NDV) is an oncolytic virus being developed for the treatment of cancer. Following infection of a human ovarian cancer cell line (OVCAR3) with a recombinant low-pathogenic NDV, persistent infection was established in a subset of tumor cells. Persistently infected (PI) cells exhibited resistance to superinfection with NDV and established an antiviral state, as demonstrated by upregulation of interferon and interferon-induced genes such as myxoma resistance gene 1 (Mx1) and retinoic acid-inducing gene-I (RIG-I). Viruses released from PI cells induced higher cell-to-cell fusion than the parental virus following infection in two tumor cell lines tested, HT1080 and HeLa, and remained attenuated in chickens. Two mutations, one in the fusion (F) protein cleavage site, F117S (F117S), and another in hemagglutinin-neuraminidase (HN), G169R (HN169R), located in the second sialic acid binding region, were responsible for the hyperfusogenic phenotype. F117S improves F protein cleavage efficiency, facilitating cell-to-cell fusion, while HN169R possesses a multifaceted role in contributing to higher fusion, reduced receptor binding, and lower neuraminidase activity, which together result in increased fusion and reduced viral replication. Thus, establishment of persistent infection in vitro involves viral genetic changes that facilitate efficient viral spread from cell to cell as a potential mechanism to escape host antiviral responses. The results of our study also demonstrate a critical role in the viral life cycle for the second receptor binding region of the HN protein, which is conserved in several paramyxoviruses. IMPORTANCE Oncolytic Newcastle disease virus (NDV) could establish persistent infection in a tumor cell line, resulting in a steady antiviral state reflected by constitutively expressed interferon. Viruses isolated from persistently infected cells are highly fusogenic, and this phenotype has been mapped to two mutations, one each in the fusion (F) and hemagglutinin-neuraminidase (HN) proteins. The F117S mutation in the F protein cleavage site improved F protein cleavage efficiency while the HN169R mutation located at the second receptor binding site of the HN protein contributed to a complex phenotype consisting of a modest increase in fusion and cell killing, lower neuraminidase activity, and reduced viral growth. This study highlights the intricate nature of these two mutations in the glycoproteins of NDV in the establishment of persistent infection. The data also shed light on the critical balance between the F and HN proteins required for efficient NDV infection and their role in avian pathogenicity.


Scientific Reports | 2016

Reconstituted B cell receptor signaling reveals carbohydrate-dependent mode of activation

Rina F. Villar; Jinal Patel; Grant C. Weaver; Masaru Kanekiyo; Adam K. Wheatley; Hadi M. Yassine; Catherine E. Costello; Kevin B. Chandler; Patrick McTamney; Gary J. Nabel; Adrian B. McDermott; John R. Mascola; Steven A. Carr; Daniel Lingwood

Activation of immune cells (but not B cells) with lectins is widely known. We used the structurally defined interaction between influenza hemagglutinin (HA) and its cell surface receptor sialic acid (SA) to identify a B cell receptor (BCR) activation modality that proceeded through non-cognate interactions with antigen. Using a new approach to reconstitute antigen-receptor interactions in a human reporter B cell line, we found that sequence-defined BCRs from the human germline repertoire could be triggered by both complementarity to influenza HA and a separate mode of signaling that relied on multivalent ligation of BCR sialyl-oligosaccharide. The latter suggested a new mechanism for priming naïve B cell responses and manifested as the induction of SA-dependent pan-activation by peripheral blood B cells. BCR crosslinking in the absence of complementarity is a superantigen effect induced by some microbial products to subvert production of antigen-specific immune responses. B cell superantigen activity through affinity for BCR carbohydrate is discussed.


PLOS ONE | 2017

Inferior immunogenicity and efficacy of respiratory syncytial virus fusion protein-based subunit vaccine candidates in aged versus young mice

Corinne Cayatte; Angie Snell Bennett; Gaurav Manohar Rajani; Leigh Hostetler; Sean K. Maynard; Michelle Lazzaro; Patrick McTamney; Kuishu Ren; Terrence O’Day; Michael P. McCarthy; Kirsten Schneider-Ohrum

Respiratory syncytial virus (RSV) is recognized as an important cause of lower and upper respiratory tract infections in older adults, and a successful vaccine would substantially lower morbidity and mortality in this age group. Recently, two vaccine candidates based on soluble purified glycoprotein F (RSV F), either alone or adjuvanted with glucopyranosyl lipid A formulated in a stable emulsion (GLA-SE), failed to reach their primary endpoints in clinical efficacy studies, despite demonstrating the desired immunogenicity profile and efficacy in young rodent models. Here, one of the RSV F vaccine candidates (post-fusion conformation, RSV post-F), and a stabilized pre-fusion form of RSV F (RSV pre-F, DS-Cav1) were evaluated in aged BALB/c mice. Humoral and cellular immunogenicity elicited after immunization of naïve, aged mice was generally lower compared to young animals. In aged mice, RSV post-F vaccination without adjuvant poorly protected the respiratory tract from virus replication, and addition of GLA-SE only improved protection in the lungs, but not in nasal turbinates. RSV pre-F induced higher neutralizing antibody titers compared to RSV post-F (as previously reported) but interestingly, RSV F-specific CD8 T cell responses were lower compared to RSV post-F responses regardless of age. The vaccines were also tested in RSV seropositive aged mice, in which both antigen forms similarly boosted neutralizing antibody titers, although GLA-SE addition boosted neutralizing activity only in RSV pre-F immunized animals. Cell-mediated immune responses in the aged mice were only slightly boosted and well below levels induced in seronegative young mice. Taken together, the findings suggest that the vaccine candidates were not able to induce a strong anti-RSV immune response in recipient mice with an aged immune system, in agreement with recent human clinical trial results. Therefore, the aged mouse model could be a useful tool to evaluate improved vaccine candidates, targeted to prevent RSV disease in older adults.


Scientific Reports | 2018

Use of Hemagglutinin Stem Probes Demonstrate Prevalence of Broadly Reactive Group 1 Influenza Antibodies in Human Sera

Hadi M. Yassine; Patrick McTamney; Jeffery C. Boyington; Tracy J. Ruckwardt; Michelle C. Crank; Maria K. Smatti; Julie E. Ledgerwood; Barney S. Graham

A better understanding of the seroprevalence and specificity of influenza HA stem-directed broadly neutralizing antibodies (bNAbs) in the human population could significantly inform influenza vaccine design efforts. Here, we utilized probes comprising headless, HA stabilized stem (SS) to determine the prevalence, binding and neutralization breadth of antibodies directed to HA stem-epitope in a cross-sectional analysis of the general population. Five group-1 HA SS probes, representing five subtypes, were chosen for this analyses. Eighty-four percent of samples analyzed had specific reactivity to at least one probe, with approximately 60% of the samples reactive to H1 probes, and up to 45% reactive to each of the non-circulating subtypes. Thirty percent of analyzed sera had cross-reactivity to at least four of five probes and this reactivity could be blocked by competing with F10 bNAb. Binding cross-reactivity in sera samples significantly correlated with frequency of H1+H5+ cross-reactive B cells. Interestingly, only 33% of the cross-reactive sera neutralized both H1N1 and H5N1 pseudoviruses. Cross-reactive and neutralizing antibodies were more prevalent in individuals >50 years of age. Our data demonstrate the need to use multiple HA-stem probes to assess for broadly reactive antibodies. Further, a universal vaccine could be designed to boost pre-existing B-cells expressing stem-directed bNAbs.


The Journal of Infectious Diseases | 2018

Prevalence and Significance of Substitutions in the Fusion Protein of Respiratory Syncytial Virus Resulting in Neutralization Escape From Antibody MEDI8897

Qing Zhu; Bin Lu; Patrick McTamney; Susan R. Palaszynski; Seme Diallo; Kuishu Ren; Nancy Ulbrandt; Nicole L. Kallewaard; Weijia Wang; Fiona Fernandes; Steve Wong; Catherine Svabek; Brian Moldt; Mark T. Esser; Hong Jing; JoAnn Suzich

Background Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infection among infants and young children. To date, no vaccine is approved for the broad population of healthy infants. MEDI8897, a potent anti-RSV fusion antibody with extended serum half-life, is currently under clinical investigation as a potential passive RSV vaccine for all infants. As a ribonucleic acid virus, RSV is prone to mutation, and the possibility of viral escape from MEDI8897 neutralization is a potential concern. Methods We generated RSV monoclonal antibody (mAb)-resistant mutants (MARMs) in vitro and studied the effect of the amino acid substitutions identified on binding and viral neutralization susceptibility to MEDI8897. The impact of resistance-associated mutations on in vitro growth kinetics and the prevalence of these mutations in currently circulating strains of RSV in the United States was assessed. Results Critical residues identified in MARMs for MEDI8897 neutralization were located in the MEDI8897 binding site defined by crystallographic analysis. Substitutions in these residues affected the binding of mAb to virus, without significant impact on viral replication in vitro. The frequency of natural resistance-associated polymorphisms was low. Conclusions Results from this study provide insights into the mechanism of MEDI8897 escape and the complexity of monitoring for emergence of resistance.


Archive | 2012

Novel influenza hemagglutinin protein-based vaccines

Gary J. Nabel; Masaro Kanekiyo; Chih-Jen Wei; Patrick McTamney; Hadi M. Yassine; Jeffrey C. Boyington

Collaboration


Dive into the Patrick McTamney's collaboration.

Top Co-Authors

Avatar

Hadi M. Yassine

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jeffrey C. Boyington

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Chih-Jen Wei

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Masaru Kanekiyo

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge