Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrick Nitschke is active.

Publication


Featured researches published by Patrick Nitschke.


Journal of Experimental Medicine | 2011

Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis

Luyan Liu; Satoshi Okada; Xiao Fei Kong; Alexandra Y. Kreins; Sophie Cypowyj; Avinash Abhyankar; Julie Toubiana; Yuval Itan; Patrick Nitschke; Cécile Masson; Beáta Tóth; Jérome Flatot; Mélanie Migaud; Maya Chrabieh; Tatiana Kochetkov; Alexandre Bolze; Alessandro Borghesi; Antoine Toulon; Julia Hiller; Stefanie Eyerich; Kilian Eyerich; Vera Gulácsy; Ludmyla Chernyshova; Viktor Chernyshov; Anastasia Bondarenko; Rosa María Cortés Grimaldo; Lizbeth Blancas-Galicia; Ileana Maria Madrigal Beas; Joachim Roesler; Klaus Magdorf

Whole-exome sequencing reveals activating STAT1 mutations in some patients with autosomal dominant chronic mucocutaneous candidiasis disease.


Nature Genetics | 2012

De novo gain-of-function KCNT1 channel mutations cause malignant migrating partial seizures of infancy.

Giulia Barcia; Matthew R. Fleming; Aline Deligniere; Valeswara-Rao Gazula; Maile R. Brown; Maéva Langouët; Haijun Chen; Jack Kronengold; Avinash Abhyankar; Roberta Cilio; Patrick Nitschke; Anna Kaminska; Nathalie Boddaert; Jean-Laurent Casanova; Isabelle Desguerre; Arnold Munnich; Olivier Dulac; Leonard K. Kaczmarek; Laurence Colleaux; Rima Nabbout

Malignant migrating partial seizures of infancy (MMPSI) is a rare epileptic encephalopathy of infancy that combines pharmacoresistant seizures with developmental delay. We performed exome sequencing in three probands with MMPSI and identified de novo gain-of-function mutations affecting the C-terminal domain of the KCNT1 potassium channel. We sequenced KCNT1 in 9 additional individuals with MMPSI and identified mutations in 4 of them, in total identifying mutations in 6 out of 12 unrelated affected individuals. Functional studies showed that the mutations led to constitutive activation of the channel, mimicking the effects of phosphorylation of the C-terminal domain by protein kinase C. In addition to regulating ion flux, KCNT1 has a non-conducting function, as its C terminus interacts with cytoplasmic proteins involved in developmental signaling pathways. These results provide a focus for future diagnostic approaches and research for this devastating condition.


Nature Genetics | 2013

Mutations in TUBG1, DYNC1H1, KIF5C and KIF2A cause malformations of cortical development and microcephaly

Karine Poirier; Nicolas Lebrun; Loïc Broix; Guoling Tian; Yoann Saillour; Cécile Boscheron; Elena Parrini; Stéphanie Valence; Benjamin Saint Pierre; Madison Oger; Didier Lacombe; David Geneviève; Elena Fontana; F. Darra; Claude Cances; Magalie Barth; Dominique Bonneau; Bernardo Dalla Bernadina; Sylvie N'Guyen; Cyril Gitiaux; Philippe Parent; Vincent des Portes; Jean Michel Pedespan; Victoire Legrez; Laetitia Castelnau-Ptakine; Patrick Nitschke; Thierry Hieu; Cécile Masson; Diana Zelenika; Annie Andrieux

The genetic causes of malformations of cortical development (MCD) remain largely unknown. Here we report the discovery of multiple pathogenic missense mutations in TUBG1, DYNC1H1 and KIF2A, as well as a single germline mosaic mutation in KIF5C, in subjects with MCD. We found a frequent recurrence of mutations in DYNC1H1, implying that this gene is a major locus for unexplained MCD. We further show that the mutations in KIF5C, KIF2A and DYNC1H1 affect ATP hydrolysis, productive protein folding and microtubule binding, respectively. In addition, we show that suppression of mouse Tubg1 expression in vivo interferes with proper neuronal migration, whereas expression of altered γ-tubulin proteins in Saccharomyces cerevisiae disrupts normal microtubule behavior. Our data reinforce the importance of centrosomal and microtubule-related proteins in cortical development and strongly suggest that microtubule-dependent mitotic and postmitotic processes are major contributors to the pathogenesis of MCD.


American Journal of Human Genetics | 2011

Ciliopathies with Skeletal Anomalies and Renal Insufficiency due to Mutations in the IFT-A Gene WDR19

Cecilie Bredrup; Sophie Saunier; Machteld M. Oud; Torunn Fiskerstrand; Alexander Hoischen; Damien Brackman; Sabine Leh; Marit Midtbø; Emilie Filhol; Christine Bole-Feysot; Patrick Nitschke; Christian Gilissen; Olav H. Haugen; Jan Stephan Sanders; Irene Stolte-Dijkstra; Dorus A. Mans; Eric J. Steenbergen; B.C.J. Hamel; Marie Matignon; Rolph Pfundt; Cécile Jeanpierre; Helge Boman; Eyvind Rødahl; Joris A. Veltman; Per M. Knappskog; N.V.A.M. Knoers; Ronald Roepman; Heleen H. Arts

A subset of ciliopathies, including Sensenbrenner, Jeune, and short-rib polydactyly syndromes are characterized by skeletal anomalies accompanied by multiorgan defects such as chronic renal failure and retinitis pigmentosa. Through exome sequencing we identified compound heterozygous mutations in WDR19 in a Norwegian family with Sensenbrenner syndrome. In a Dutch family with the clinically overlapping Jeune syndrome, a homozygous missense mutation in the same gene was found. Both families displayed a nephronophthisis-like nephropathy. Independently, we also identified compound heterozygous WDR19 mutations by exome sequencing in a Moroccan family with isolated nephronophthisis. WDR19 encodes IFT144, a member of the intraflagellar transport (IFT) complex A that drives retrograde ciliary transport. We show that IFT144 is absent from the cilia of fibroblasts from one of the Sensenbrenner patients and that ciliary abundance and morphology is perturbed, demonstrating the ciliary pathogenesis. Our results suggest that isolated nephronophthisis, Jeune, and Sensenbrenner syndromes are clinically overlapping disorders that can result from a similar molecular cause.


Nature Genetics | 2011

KIF7 mutations cause fetal hydrolethalus and acrocallosal syndromes

Audrey Putoux; Sophie Thomas; Karlien L.M. Coene; Erica E. Davis; Yasemin Alanay; Gonul Ogur; Elif Uz; Daniela Buzas; Céline Gomes; Sophie Patrier; Christopher L. Bennett; Nadia Elkhartoufi; Marie-Hélène Saint Frison; Luc Rigonnot; Nicole Joyé; Solenn Pruvost; Gülen Eda Utine; Koray Boduroglu; Patrick Nitschke; Laura Fertitta; Christel Thauvin-Robinet; Arnold Munnich; Valérie Cormier-Daire; Raoul C. M. Hennekam; Estelle Colin; Nurten Akarsu; Christine Bole-Feysot; Nicolas Cagnard; Alain Schmitt; Nicolas Goudin

KIF7, the human ortholog of Drosophila Costal2, is a key component of the Hedgehog signaling pathway. Here we report mutations in KIF7 in individuals with hydrolethalus and acrocallosal syndromes, two multiple malformation disorders with overlapping features that include polydactyly, brain abnormalities and cleft palate. Consistent with a role of KIF7 in Hedgehog signaling, we show deregulation of most GLI transcription factor targets and impaired GLI3 processing in tissues from individuals with KIF7 mutations. KIF7 is also a likely contributor of alleles across the ciliopathy spectrum, as sequencing of a diverse cohort identified several missense mutations detrimental to protein function. In addition, in vivo genetic interaction studies indicated that knockdown of KIF7 could exacerbate the phenotype induced by knockdown of other ciliopathy transcripts. Our data show the role of KIF7 in human primary cilia, especially in the Hedgehog pathway through the regulation of GLI targets, and expand the clinical spectrum of ciliopathies.


Blood | 2012

MST1 mutations in autosomal recessive primary immunodeficiency characterized by defective naive T-cell survival

Nadine T. Nehme; Jana Pachlopnik Schmid; Franck Debeurme; Isabelle André-Schmutz; Annick Lim; Patrick Nitschke; Frédéric Rieux-Laucat; Patrick Lutz; Capucine Picard; Nizar Mahlaoui; Alain Fischer; Geneviève de Saint Basile

The molecular mechanisms that underlie T-cell quiescence are poorly understood. In the present study, we report a primary immunodeficiency phenotype associated with MST1 deficiency and primarily characterized by a progressive loss of naive T cells. The in vivo consequences include recurrent bacterial and viral infections and autoimmune manifestations. MST1-deficient T cells poorly expressed the transcription factor FOXO1, the IL-7 receptor, and BCL2. Conversely, FAS expression and the FAS-mediating apoptotic pathway were up-regulated. These abnormalities suggest that increased cell death of naive and proliferating T cells is the main mechanism underlying this novel immunodeficiency. Our results characterize a new mechanism in primary T-cell immunodeficiencies and highlight a role of the MST1/FOXO1 pathway in controlling the death of human naive T cells.


Journal of Clinical Investigation | 2013

ADCK4 mutations promote steroid-Resistant nephrotic syndrome through CoQ10 biosynthesis disruption

Shazia Ashraf; Heon Yung Gee; Stéphanie Woerner; Letian X. Xie; Virginia Vega-Warner; Svjetlana Lovric; Humphrey Fang; Xuewen Song; Daniel C. Cattran; Carmen Avila-Casado; Andrew D. Paterson; Patrick Nitschke; Christine Bole-Feysot; Pierre Cochat; Julian Esteve-Rudd; Birgit Haberberger; Susan J. Allen; Weibin Zhou; Rannar Airik; Edgar A. Otto; Moumita Barua; Mohamed Al-Hamed; Jameela A. Kari; Jonathan Evans; Agnieszka Bierzynska; Moin A. Saleem; Detlef Bockenhauer; Robert Kleta; Sherif El Desoky; Duygu Övünç Hacıhamdioğlu

Identification of single-gene causes of steroid-resistant nephrotic syndrome (SRNS) has furthered the understanding of the pathogenesis of this disease. Here, using a combination of homozygosity mapping and whole human exome resequencing, we identified mutations in the aarF domain containing kinase 4 (ADCK4) gene in 15 individuals with SRNS from 8 unrelated families. ADCK4 was highly similar to ADCK3, which has been shown to participate in coenzyme Q10 (CoQ10) biosynthesis. Mutations in ADCK4 resulted in reduced CoQ10 levels and reduced mitochondrial respiratory enzyme activity in cells isolated from individuals with SRNS and transformed lymphoblasts. Knockdown of adck4 in zebrafish and Drosophila recapitulated nephrotic syndrome-associated phenotypes. Furthermore, ADCK4 was expressed in glomerular podocytes and partially localized to podocyte mitochondria and foot processes in rat kidneys and cultured human podocytes. In human podocytes, ADCK4 interacted with members of the CoQ10 biosynthesis pathway, including COQ6, which has been linked with SRNS and COQ7. Knockdown of ADCK4 in podocytes resulted in decreased migration, which was reversed by CoQ10 addition. Interestingly, a patient with SRNS with a homozygous ADCK4 frameshift mutation had partial remission following CoQ10 treatment. These data indicate that individuals with SRNS with mutations in ADCK4 or other genes that participate in CoQ10 biosynthesis may be treatable with CoQ10.


American Journal of Human Genetics | 2011

Mutations in the TGFβ Binding-Protein-Like Domain 5 of FBN1 Are Responsible for Acromicric and Geleophysic Dysplasias

Carine Le Goff; Clémentine Mahaut; Lauren W. Wang; Slimane Allali; Avinash Abhyankar; Sacha A. Jensen; Louise Zylberberg; Gwenaëlle Collod-Béroud; Damien Bonnet; Yasemin Alanay; Angela F. Brady; Marie-Pierre Cordier; Koenraad Devriendt; David Geneviève; Pelin Özlem Simsek Kiper; Hiroshi Kitoh; Deborah Krakow; Sally Ann Lynch; Martine Le Merrer; André Mégarbané; Geert Mortier; Sylvie Odent; Michel Polak; Marianne Rohrbach; David Sillence; Irene Stolte-Dijkstra; Andrea Superti-Furga; David L. Rimoin; Vicken Topouchian; Sheila Unger

Geleophysic (GD) and acromicric dysplasia (AD) belong to the acromelic dysplasia group and are both characterized by severe short stature, short extremities, and stiff joints. Although AD has an unknown molecular basis, we have previously identified ADAMTSL2 mutations in a subset of GD patients. After exome sequencing in GD and AD cases, we selected fibrillin 1 (FBN1) as a candidate gene, even though mutations in this gene have been described in Marfan syndrome, which is characterized by tall stature and arachnodactyly. We identified 16 heterozygous FBN1 mutations that are all located in exons 41 and 42 and encode TGFβ-binding protein-like domain 5 (TB5) of FBN1 in 29 GD and AD cases. Microfibrillar network disorganization and enhanced TGFβ signaling were consistent features in GD and AD fibroblasts. Importantly, a direct interaction between ADAMTSL2 and FBN1 was demonstrated, suggesting a disruption of this interaction as the underlying mechanism of GD and AD phenotypes. Although enhanced TGFβ signaling caused by FBN1 mutations can trigger either Marfan syndrome or GD and AD, our findings support the fact that TB5 mutations in FBN1 are responsible for short stature phenotypes.


American Journal of Human Genetics | 2013

Defects in the IFT-B Component IFT172 Cause Jeune and Mainzer-Saldino Syndromes in Humans

Jan Halbritter; Albane A. Bizet; Miriam Schmidts; Jonathan D. Porath; Daniela A. Braun; Heon Yung Gee; Aideen McInerney-Leo; Pauline Krug; Emilie Filhol; Erica E. Davis; Rannar Airik; Peter G. Czarnecki; Anna Lehman; Peter Trnka; Patrick Nitschke; Christine Bole-Feysot; Markus Schueler; Bertrand Knebelmann; Stéphane Burtey; Attila J. Szabó; Kalman Tory; Paul Leo; Brooke Gardiner; Fiona McKenzie; Andreas Zankl; Matthew A. Brown; Jane Hartley; Eamonn R. Maher; Chunmei Li; Michel R. Leroux

Intraflagellar transport (IFT) depends on two evolutionarily conserved modules, subcomplexes A (IFT-A) and B (IFT-B), to drive ciliary assembly and maintenance. All six IFT-A components and their motor protein, DYNC2H1, have been linked to human skeletal ciliopathies, including asphyxiating thoracic dystrophy (ATD; also known as Jeune syndrome), Sensenbrenner syndrome, and Mainzer-Saldino syndrome (MZSDS). Conversely, the 14 subunits in the IFT-B module, with the exception of IFT80, have unknown roles in human disease. To identify additional IFT-B components defective in ciliopathies, we independently performed different mutation analyses: candidate-based sequencing of all IFT-B-encoding genes in 1,467 individuals with a nephronophthisis-related ciliopathy or whole-exome resequencing in 63 individuals with ATD. We thereby detected biallelic mutations in the IFT-B-encoding gene IFT172 in 12 families. All affected individuals displayed abnormalities of the thorax and/or long bones, as well as renal, hepatic, or retinal involvement, consistent with the diagnosis of ATD or MZSDS. Additionally, cerebellar aplasia or hypoplasia characteristic of Joubert syndrome was present in 2 out of 12 families. Fibroblasts from affected individuals showed disturbed ciliary composition, suggesting alteration of ciliary transport and signaling. Knockdown of ift172 in zebrafish recapitulated the human phenotype and demonstrated a genetic interaction between ift172 and ift80. In summary, we have identified defects in IFT172 as a cause of complex ATD and MZSDS. Our findings link the group of skeletal ciliopathies to an additional IFT-B component, IFT172, similar to what has been shown for IFT-A.


Journal of Clinical Investigation | 2014

A human immunodeficiency caused by mutations in the PIK3R1 gene

Marie-Céline Deau; Lucie Heurtier; Pierre Frange; Felipe Suarez; Christine Bole-Feysot; Patrick Nitschke; Marina Cavazzana; Capucine Picard; Anne Durandy; Alain Fischer; Sven Kracker

Recently, patient mutations that activate PI3K signaling have been linked to a primary antibody deficiency. Here, we used whole-exome sequencing and characterized the molecular defects in 4 patients from 3 unrelated families diagnosed with hypogammaglobulinemia and recurrent infections. We identified 2 different heterozygous splice site mutations that affect the same splice site in PIK3R1, which encodes the p85α subunit of PI3K. The resulting deletion of exon 10 produced a shortened p85α protein that lacks part of the PI3K p110-binding domain. The hypothetical loss of p85α-mediated inhibition of p110 activity was supported by elevated phosphorylation of the known downstream signaling kinase AKT in patient T cell blasts. Analysis of patient blood revealed that naive T and memory B cell counts were low, and T cell blasts displayed enhanced activation-induced cell death, which was corrected by addition of the PI3Kδ inhibitor IC87114. Furthermore, B lymphocytes proliferated weakly in response to activation via the B cell receptor and TLR9, indicating a B cell defect. The phenotype exhibited by patients carrying the PIK3R1 splice site mutation is similar to that of patients carrying gain-of-function mutations in PIK3CD. Our results suggest that PI3K activity is tightly regulated in T and B lymphocytes and that various defects in the PI3K-triggered pathway can cause primary immunodeficiencies.

Collaboration


Dive into the Patrick Nitschke's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arnold Munnich

Necker-Enfants Malades Hospital

View shared research outputs
Top Co-Authors

Avatar

Capucine Picard

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Stanislas Lyonnet

Necker-Enfants Malades Hospital

View shared research outputs
Top Co-Authors

Avatar

Nathalie Boddaert

Necker-Enfants Malades Hospital

View shared research outputs
Top Co-Authors

Avatar

Laurence Colleaux

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Valérie Cormier-Daire

Necker-Enfants Malades Hospital

View shared research outputs
Top Co-Authors

Avatar

Alain Fischer

Louisiana State University in Shreveport

View shared research outputs
Top Co-Authors

Avatar

Emilie Filhol

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Albane A. Bizet

Paris Descartes University

View shared research outputs
Researchain Logo
Decentralizing Knowledge