Patrick O'Donoghue
University of Western Ontario
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Patrick O'Donoghue.
Microbiology and Molecular Biology Reviews | 2003
Patrick O'Donoghue; Zaida Luthey-Schulten
SUMMARY The aminoacyl-tRNA synthetases are one of the major protein components in the translation machinery. These essential proteins are found in all forms of life and are responsible for charging their cognate tRNAs with the correct amino acid. The evolution of the tRNA synthetases is of fundamental importance with respect to the nature of the biological cell and the transition from an RNA world to the modern world dominated by protein-enzymes. We present a structure-based phylogeny of the aminoacyl-tRNA synthetases. By using structural alignments of all of the aminoacyl-tRNA synthetases of known structure in combination with a new measure of structural homology, we have reconstructed the evolutionary history of these proteins. In order to derive unbiased statistics from the structural alignments, we introduce a multidimensional QR factorization which produces a nonredundant set of structures. Since protein structure is more highly conserved than protein sequence, this study has allowed us to glimpse the evolution of protein structure that predates the root of the universal phylogenetic tree. The extensive sequence-based phylogenetic analysis of the tRNA synthetases (Woese et al., Microbiol. Mol. Biol. Rev. 64:202-236, 2000) has further enabled us to reconstruct the complete evolutionary profile of these proteins and to make connections between major evolutionary events and the resulting changes in protein shape. We also discuss the effect of functional specificity on protein shape over the complex evolutionary course of the tRNA synthetases.
Proceedings of the National Academy of Sciences of the United States of America | 2006
Jing Yuan; Sotiria Palioura; Juan C. Salazar; Dan Su; Patrick O'Donoghue; Michael J. Hohn; Alexander Machado Cardoso; William B. Whitman; Dieter Söll
The trace element selenium is found in proteins as selenocysteine (Sec), the 21st amino acid to participate in ribosome-mediated translation. The substrate for ribosomal protein synthesis is selenocysteinyl-tRNASec. Its biosynthesis from seryl-tRNASec has been established for bacteria, but the mechanism of conversion from Ser-tRNASec remained unresolved for archaea and eukarya. Here, we provide evidence for a different route present in these domains of life that requires the tRNASec-dependent conversion of O-phosphoserine (Sep) to Sec. In this two-step pathway, O-phosphoseryl-tRNASec kinase (PSTK) converts Ser-tRNASec to Sep-tRNASec. This misacylated tRNA is the obligatory precursor for a Sep-tRNA:Sec-tRNA synthase (SepSecS); this protein was previously annotated as SLA/LP. The human and archaeal SepSecS genes complement in vivo an Escherichia coli Sec synthase (SelA) deletion strain. Furthermore, purified recombinant SepSecS converts Sep-tRNASec into Sec-tRNASec in vitro in the presence of sodium selenite and purified recombinant E. coli selenophosphate synthetase (SelD). Phylogenetic arguments suggest that Sec decoding was present in the last universal common ancestor. SepSecS and PSTK coevolved with the archaeal and eukaryotic lineages, but the history of PSTK is marked by several horizontal gene transfer events, including transfer to non-Sec-decoding Cyanobacteria and fungi.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Jennifer M. Kavran; Sarath Gundllapalli; Patrick O'Donoghue; Markus Englert; Dieter Söll; Thomas A. Steitz
Pyrrolysine (Pyl), the 22nd natural amino acid and genetically encoded by UAG, becomes attached to its cognate tRNA by pyrrolysyl-tRNA synthetase (PylRS). We have determined three crystal structures of the Methanosarcina mazei PylRS complexed with either AMP–PNP, Pyl–AMP plus pyrophosphate, or the Pyl analogue N-ε-[(cylopentyloxy)carbonyl]-l-lysine plus ATP. The structures reveal that PylRS utilizes a deep hydrophobic pocket for recognition of the Pyl side chain. A comparison of these structures with previously determined class II tRNA synthetase complexes illustrates that different substrate specificities derive from changes in a small number of residues that form the substrate side-chain-binding pocket. The knowledge of these structures allowed the placement of PylRS in the aminoacyl-tRNA synthetase (aaRS) tree as the last known synthetase that evolved for genetic code expansion, as well as the finding that Pyl arose before the last universal common ancestral state. The PylRS structure provides an excellent framework for designing new aaRSs with altered amino acid specificity.
Proceedings of the National Academy of Sciences of the United States of America | 2013
James H. Campbell; Patrick O'Donoghue; Alisha G. Campbell; Patrick Schwientek; Alexander Sczyrba; Tanja Woyke; Dieter Söll; Mircea Podar
The composition of the human microbiota is recognized as an important factor in human health and disease. Many of our cohabitating microbes belong to phylum-level divisions for which there are no cultivated representatives and are only represented by small subunit rRNA sequences. For one such taxon (SR1), which includes bacteria with elevated abundance in periodontitis, we provide a single-cell genome sequence from a healthy oral sample. SR1 bacteria use a unique genetic code. In-frame TGA (opal) codons are found in most genes (85%), often at loci normally encoding conserved glycine residues. UGA appears not to function as a stop codon and is in equilibrium with the canonical GGN glycine codons, displaying strain-specific variation across the human population. SR1 encodes a divergent tRNAGlyUCA with an opal-decoding anticodon. SR1 glycyl-tRNA synthetase acylates tRNAGlyUCA with glycine in vitro with similar activity compared with normal tRNAGlyUCC. Coexpression of SR1 glycyl-tRNA synthetase and tRNAGlyUCA in Escherichia coli yields significant β-galactosidase activity in vivo from a lacZ gene containing an in-frame TGA codon. Comparative genomic analysis with Human Microbiome Project data revealed that the human body harbors a striking diversity of SR1 bacteria. This is a surprising finding because SR1 is most closely related to bacteria that live in anoxic and thermal environments. Some of these bacteria share common genetic and metabolic features with SR1, including UGA to glycine reassignment and an archaeal-type ribulose-1,5-bisphosphate carboxylase (RubisCO) involved in AMP recycling. UGA codon reassignment renders SR1 genes untranslatable by other bacteria, which impacts horizontal gene transfer within the human microbiota.
Nature | 2009
Kayo Nozawa; Patrick O'Donoghue; Sarath Gundllapalli; Yuhei Araiso; Ryuichiro Ishitani; Takuya Umehara; Dieter Söll; Osamu Nureki
Pyrrolysine (Pyl), the 22nd natural amino acid, is genetically encoded by UAG and inserted into proteins by the unique suppressor tRNAPyl (ref. 1). The Methanosarcinaceae produce Pyl and express Pyl-containing methyltransferases that allow growth on methylamines. Homologous methyltransferases and the Pyl biosynthetic and coding machinery are also found in two bacterial species. Pyl coding is maintained by pyrrolysyl-tRNA synthetase (PylRS), which catalyses the formation of Pyl-tRNAPyl (refs 4, 5). Pyl is not a recent addition to the genetic code. PylRS was already present in the last universal common ancestor; it then persisted in organisms that utilize methylamines as energy sources. Recent protein engineering efforts added non-canonical amino acids to the genetic code. This technology relies on the directed evolution of an ‘orthogonal’ tRNA synthetase–tRNA pair in which an engineered aminoacyl-tRNA synthetase (aaRS) specifically and exclusively acylates the orthogonal tRNA with a non-canonical amino acid. For Pyl the natural evolutionary process developed such a system some 3 billion years ago. When transformed into Escherichia coli, Methanosarcina barkeri PylRS and tRNAPyl function as an orthogonal pair in vivo. Here we show that Desulfitobacterium hafniense PylRS–tRNAPyl is an orthogonal pair in vitro and in vivo, and present the crystal structure of this orthogonal pair. The ancient emergence of PylRS–tRNAPyl allowed the evolution of unique structural features in both the protein and the tRNA. These structural elements manifest an intricate, specialized aaRS–tRNA interaction surface that is highly distinct from those observed in any other known aaRS–tRNA complex; it is this general property that underlies the molecular basis of orthogonality.
Nature Chemical Biology | 2013
Patrick O'Donoghue; Jiqiang Ling; Yane-Shih Wang; Dieter Söll
Genetic code expansion for synthesis of proteins containing noncanonical amino acids is a rapidly growing field in synthetic biology. Creating optimal orthogonal translation systems will require re-engineering central components of the protein synthesis machinery on the basis of a solid mechanistic biochemical understanding of the synthetic process.
FEBS Letters | 2010
Jing Yuan; Patrick O'Donoghue; Alex Ambrogelly; Sarath Gundllapalli; R. Lynn Sherrer; Sotiria Palioura; Miljan Simonović; Dieter Söll
Selenocysteine and pyrrolysine, known as the 21st and 22nd amino acids, are directly inserted into growing polypeptides during translation. Selenocysteine is synthesized via a tRNA‐dependent pathway and decodes UGA (opal) codons. The incorporation of selenocysteine requires the concerted action of specific RNA and protein elements. In contrast, pyrrolysine is ligated directly to tRNAPyl and inserted into proteins in response to UAG (amber) codons without the need for complex re‐coding machinery. Here we review the latest updates on the structure and mechanisms of molecules involved in Sec‐tRNASec and Pyl‐tRNAPyl formation as well as the distribution of the Pyl‐decoding trait.
Nature Reviews Microbiology | 2015
Jiqiang Ling; Patrick O'Donoghue; Dieter Söll
The genetic code, initially thought to be universal and immutable, is now known to contain many variations, including biased codon usage, codon reassignment, ambiguous decoding and recoding. As a result of recent advances in the areas of genome sequencing, biochemistry, bioinformatics and structural biology, our understanding of genetic code flexibility has advanced substantially in the past decade. In this Review, we highlight the prevalence, evolution and mechanistic basis of genetic code variations in microorganisms, and we discuss how this flexibility of the genetic code affects microbial physiology.
FEBS Letters | 2012
Patrick O'Donoghue; Laure Prat; Ilka U. Heinemann; Jiqiang Ling; Keturah A. Odoi; Wenshe R. Liu; Dieter Söll
Over 300 amino acids are found in proteins in nature, yet typically only 20 are genetically encoded. Reassigning stop codons and use of quadruplet codons emerged as the main avenues for genetically encoding non‐canonical amino acids (NCAAs). Canonical aminoacyl‐tRNAs with near‐cognate anticodons also read these codons to some extent. This background suppression leads to ‘statistical protein’ that contains some natural amino acid(s) at a site intended for NCAA. We characterize near‐cognate suppression of amber, opal and a quadruplet codon in common Escherichia coli laboratory strains and find that the PylRS/tRNAPyl orthogonal pair cannot completely outcompete contamination by natural amino acids.
Angewandte Chemie | 2014
Markus J. Bröcker; Joanne M. L. Ho; George M. Church; Dieter Söll; Patrick O'Donoghue
Selenocysteine (Sec) is naturally incorporated into proteins by recoding the stop codon UGA. Sec is not hardwired to UGA, as the Sec insertion machinery was found to be able to site-specifically incorporate Sec directed by 58 of the 64 codons. For 15 sense codons, complete conversion of the codon meaning from canonical amino acid (AA) to Sec was observed along with a tenfold increase in selenoprotein yield compared to Sec insertion at the three stop codons. This high-fidelity sense-codon recoding mechanism was demonstrated for Escherichia coli formate dehydrogenase and recombinant human thioredoxin reductase and confirmed by independent biochemical and biophysical methods. Although Sec insertion at UGA is known to compete against protein termination, it is surprising that the Sec machinery has the ability to outcompete abundant aminoacyl-tRNAs in decoding sense codons. The findings have implications for the process of translation and the information storage capacity of the biological cell.