Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrick Ollitrault is active.

Publication


Featured researches published by Patrick Ollitrault.


BMC Genomics | 2012

SNP mining in C. clementina BAC end sequences; transferability in the Citrus genus (Rutaceae), phylogenetic inferences and perspectives for genetic mapping

Patrick Ollitrault; Javier Terol; Andres Garcia-Lor; Aurélie Bérard; Aurélie Chauveau; Yann Froelicher; Caroline Belzile; Raphaël Morillon; Luis Navarro; Dominique Brunel; Manuel Talon

BackgroundWith the increasing availability of EST databases and whole genome sequences, SNPs have become the most abundant and powerful polymorphic markers. However, SNP chip data generally suffers from ascertainment biases caused by the SNP discovery and selection process in which a small number of individuals are used as discovery panels. The ongoing International Citrus Genome Consortium sequencing project of the highly heterozygous Clementine and sweet orange genomes will soon result in the release of several hundred thousand SNPs. The primary goals of this study were: (i) to estimate the transferability within the genus Citrus of SNPs discovered from Clementine BACend sequencing (BES), (ii) to estimate bias associated with the very narrow discovery panel, and (iii) to evaluate the usefulness of the Clementine-derived SNP markers for diversity analysis and comparative mapping studies between the different cultivated Citrus species.ResultsFifty-four accessions covering the main Citrus species and 52 interspecific hybrids between pummelo and Clementine were genotyped on a GoldenGate array platform using 1,457 SNPs mined from Clementine BES and 37 SNPs identified between and within C. maxima, C. medica, C. reticulata and C. micrantha. Consistent results were obtained from 622 SNP loci. Of these markers, 116 displayed incomplete transferability primarily in C. medica, C. maxima and wild Citrus species. The two primary biases associated with the SNP mining in Clementine were an overestimation of the C. reticulata diversity and an underestimation of the interspecific differentiation. However, the genetic stratification of the gene pool was high, with very frequent significant linkage disequilibrium. Furthermore, the shared intraspecific polymorphism and accession heterozygosity were generally enough to perform interspecific comparative genetic mapping.ConclusionsA set of 622 SNP markers providing consistent results was selected. Of the markers mined from Clementine, 80.5% were successfully transferred to the whole Citrus gene pool. Despite the ascertainment biases in relation to the Clementine origin, the SNP data confirm the important stratification of the gene pools around C. maxima, C. medica and C. reticulata as well as previous hypothesis on the origin of secondary species. The implemented SNP marker set will be very useful for comparative genetic mapping in Citrus and genetic association in C. reticulata.


BMC Genomics | 2008

Development of genomic resources for Citrus clementina : Characterization of three deep-coverage BAC libraries and analysis of 46,000 BAC end sequences

Javier Terol; M Angel Naranjo; Patrick Ollitrault; Manuel Talon

BackgroundCitrus species constitute one of the major tree fruit crops of the subtropical regions with great economic importance. However, their peculiar reproductive characteristics, low genetic diversity and the long-term nature of tree breeding mostly impair citrus variety improvement. In woody plants, genomic science holds promise of improvements and in the Citrus genera the development of genomic tools may be crucial for further crop improvements. In this work we report the characterization of three BAC libraries from Clementine (Citrus clementina), one of the most relevant citrus fresh fruit market cultivars, and the analyses of 46.000 BAC end sequences. Clementine is a diploid plant with an estimated haploid genome size of 367 Mb and 2n = 18 chromosomes, which makes feasible the use of genomics tools to boost genetic improvement.ResultsThree genomic BAC libraries of Citrus clementina were constructed through Eco RI, Mbo I and Hind III digestions and 56,000 clones, representing an estimated genomic coverage of 19.5 haploid genome-equivalents, were picked. BAC end sequencing (BES) of 28,000 clones produced 28.1 Mb of genomic sequence that allowed the identification of the repetitive fraction (12.5% of the genome) and estimation of gene content (31,000 genes) of this species. BES analyses identified 3,800 SSRs and 6,617 putative SNPs. Comparative genomic studies showed that citrus gene homology and microsyntheny with Populus trichocarpa was rather higher than with Arabidopsis thaliana, a species phylogenetically closer to citrus.ConclusionIn this work, we report the characterization of three BAC libraries from C. clementina, and a new set of genomic resources that may be useful for isolation of genes underlying economically important traits, physical mapping and eventually crop improvement in Citrus species. In addition, BAC end sequencing has provided a first insight on the basic structure and organization of the citrus genome and has yielded valuable molecular markers for genetic mapping and cloning of genes of agricultural interest. Paired end sequences also may be very helpful for whole-genome sequencing programs.


Comptes Rendus Biologies | 2008

Tetraploid citrus rootstocks are more tolerant to salt stress than diploid

Basel Saleh; Thierry Allario; Dominique Dambier; Patrick Ollitrault; Raphaël Morillon

Citrus trees are subject to several abiotic constraints such as salinity. Providing new rootstocks more tolerant is thus a requirement. In this article, we investigated salt stress tolerance of three tetraploid rootstock genotypes when compared to their respective diploid rootstocks (Poncirus trifoliata, Carrizo citrange, Cleopatra mandarin). Plant growth, leaf fall and ion contents were investigated. At the end of the experiment, leaf fall was observed only for diploid Poncirus trifoliata plants as well as chlorosis symptoms for Poncirus trifoliata and Carrizo citrange diploid plants. The diploid Cleopatra mandarin plants growth rate was not affected by salt stress and has even been increased for tetraploid Cleopatra mandarin. Ion contents investigation has shown lower accumulations of chloride ions in leaves of the tetraploid plants when compared to diploid plants. Our results suggest that citrus tetraploid rootstocks are more tolerant to salt stress than their corresponding diploid.


Tree Genetics & Genomes | 2011

New universal mitochondrial PCR markers reveal new information on maternal citrus phylogeny

Yann Froelicher; Wafa Mouhaya; Jean Baptiste Bassene; Gilles Costantino; Mourad Kamiri; François Luro; Raphaël Morillon; Patrick Ollitrault

The aim of this work was to provide a set of mitochondrial markers to reveal polymorphism and to study the maternal phylogeny in citrus. We first used 44 universal markers previously described in the literature: nine of these markers produced amplification products but only one revealed polymorphism in citrus. We then designed six conserved pairs of primers using the complete mitochondrial DNA sequences of Arabidopsis thaliana and Beta vulgaris to amplify polymorphic intergenic and intronic regions. From these six pairs of primers, three from introns of genes coding for NADH dehydrogenase subunits 2, 5, and 7, revealed polymorphism in citrus. First, we confirmed that citrus have a maternal mitochondrial inheritance in two populations of 250 and 120 individuals. We then conducted a phylogenic study using four polymorphic primers on 77 genotypes representing the diversity of Citrus and two related genera. Seven mitotypes were identified. Six mitotypes (Poncirus, Fortunella, Citrus medica, Citrus micrantha, Citrus reticulata, and Citrus maxima) were congruent with previous taxonomic investigations. The seventh mitotype enabled us to distinguish an acidic mandarin group (‘Cleopatra’, ‘Sunki’ and ‘Shekwasha’) from other mandarins and revealed a maternal relationship with Citrus limonia (‘Rangpur’ lime, ‘Volkamer’ lemon) and Citrus jambhiri (‘Rough’ lemon). This mitotype contained only cultivated species used as rootstocks due to their good tolerances to abiotic stress. Our results also suggest that two species classified by Swingle and Reece, Citrus limon, and Citrus aurantifolia, have multiple maternal cytoplasmic origins.


Journal of Experimental Botany | 2011

Large changes in anatomy and physiology between diploid Rangpur lime (Citrus limonia) and its autotetraploid are not associated with large changes in leaf gene expression

Thierry Allario; Javier Brumos; José M. Colmenero-Flores; Francisco R. Tadeo; Yann Froelicher; Manuel Talon; Luis Navarro; Patrick Ollitrault; Raphaël Morillon

Very little is known about the molecular origin of the large phenotypic differentiation between genotypes arising from somatic chromosome set doubling and their diploid parents. In this study, the anatomy and physiology of diploid (2x) and autotetraploid (4x) Rangpur lime (Citrus limonia Osbeck) seedlings has been characterized. Growth of 2x was more vigorous than 4x although leaves, stems, and roots of 4x plants were thicker and contained larger cells than 2x that may have a large impact on cell-to-cell water exchanges. Leaf water content was higher in 4x than in 2x. Leaf transcriptome expression using a citrus microarray containing 21 081 genes revealed that the number of genes differentially expressed in both genotypes was less than 1% and the maximum rate of gene expression change within a 2-fold range. Six up-regulated genes in 4x were targeted to validate microarray results by real-time reverse transcription-PCR. Five of these genes were apparently involved in the response to water deficit, suggesting that, in control conditions, the genome expression of citrus autotetraploids may act in a similar way to diploids under water-deficit stress condition. The sixth up-regulated gene which codes for a histone may also play an important role in regulating the transcription of growth processes. These results show that the large phenotypic differentiation in 4x Rangpur lime compared with 2x is not associated with large changes in genome expression. This suggests that, in 4x Rangpur lime, subtle changes in gene expression may be at the origin of the phenotypic differentiation of 4x citrus when compared with 2x.


BMC Genomics | 2012

A reference genetic map of C. clementina hort. ex Tan.; citrus evolution inferences from comparative mapping

Patrick Ollitrault; Javier Terol; Chunxian Chen; Claire T. Federici; Samia Lotfy; Isabelle Hippolyte; Frédérique Ollitrault; Aurélie Bérard; Aurélie Chauveau; José Cuenca; Gilles Costantino; A.Yildiz Kacar; Lisa Mu; Andres Garcia-Lor; Yann Froelicher; Pablo Aleza; Anne Boland; Claire Billot; Luis Navarro; François Luro; Mikeal L. Roose; Frederick G. Gmitter; Manuel Talon; Dominique Brunel

BackgroundMost modern citrus cultivars have an interspecific origin. As a foundational step towards deciphering the interspecific genome structures, a reference whole genome sequence was produced by the International Citrus Genome Consortium from a haploid derived from Clementine mandarin. The availability of a saturated genetic map of Clementine was identified as an essential prerequisite to assist the whole genome sequence assembly. Clementine is believed to be a ‘Mediterranean’ mandarin × sweet orange hybrid, and sweet orange likely arose from interspecific hybridizations between mandarin and pummelo gene pools. The primary goals of the present study were to establish a Clementine reference map using codominant markers, and to perform comparative mapping of pummelo, sweet orange, and Clementine.ResultsFive parental genetic maps were established from three segregating populations, which were genotyped with Single Nucleotide Polymorphism (SNP), Simple Sequence Repeats (SSR) and Insertion-Deletion (Indel) markers. An initial medium density reference map (961 markers for 1084.1 cM) of the Clementine was established by combining male and female Clementine segregation data. This Clementine map was compared with two pummelo maps and a sweet orange map. The linear order of markers was highly conserved in the different species. However, significant differences in map size were observed, which suggests a variation in the recombination rates. Skewed segregations were much higher in the male than female Clementine mapping data. The mapping data confirmed that Clementine arose from hybridization between ‘Mediterranean’ mandarin and sweet orange. The results identified nine recombination break points for the sweet orange gamete that contributed to the Clementine genome.ConclusionsA reference genetic map of citrus, used to facilitate the chromosome assembly of the first citrus reference genome sequence, was established. The high conservation of marker order observed at the interspecific level should allow reasonable inferences of most citrus genome sequences by mapping next-generation sequencing (NGS) data in the reference genome sequence. The genome of the haploid Clementine used to establish the citrus reference genome sequence appears to have been inherited primarily from the ‘Mediterranean’ mandarin. The high frequency of skewed allelic segregations in the male Clementine data underline the probable extent of deviation from Mendelian segregation for characters controlled by heterozygous loci in male parents.


Molecular Genetics and Genomics | 2012

Comparative use of InDel and SSR markers in deciphering the interspecific structure of cultivated citrus genetic diversity: a perspective for genetic association studies.

Andres Garcia-Lor; François Luro; Luis Navarro; Patrick Ollitrault

Genetic stratification associated with domestication history is a key parameter for estimating the pertinence of genetic association study within a gene pool. Previous molecular and phenotypic studies have shown that most of the diversity of cultivated citrus results from recombination between three main species: C. medica (citron), C. reticulata (mandarin) and C. maxima (pummelo). However, the precise contribution of each of these basic species to the genomes of secondary cultivated species, such as C. sinensis (sweet orange), C. limon (lemon), C. aurantium (sour orange), C. paradisi (grapefruit) and recent hybrids is unknown. Our study focused on: (1) the development of insertion–deletion (InDel) markers and their comparison with SSR markers for use in genetic diversity and phylogenetic studies; (2) the analysis of the contributions of basic taxa to the genomes of secondary species and modern cultivars and (3) the description of the organisation of the Citrus gene pool, to evaluate how genetic association studies should be done at the cultivated Citrus gene pool level. InDel markers appear to be better phylogenetic markers for tracing the contributions of the three ancestral species, whereas SSR markers are more useful for intraspecific diversity analysis. Most of the genetic organisation of the Citrus gene pool is related to the differentiation between C. reticulata, C. maxima and C. medica. High and generalised LD was observed, probably due to the initial differentiation between the basic species and a limited number of interspecific recombinations. This structure precludes association genetic studies at the genus level without developing additional recombinant populations from interspecific hybrids. Association genetic studies should also be affordable at intraspecific level in a less structured pool such as C. reticulata.


Molecular Ecology Resources | 2008

Characterization of microsatellite markers in mandarin orange (Citrus reticulata Blanco)

Yann Froelicher; Dominique Dambier; Jean Baptiste Bassene; Gilles Costantino; Samia Lotfy; Christophe Didout; Vincent Beaumont; Philippe Brottier; Ange-Marie Risterucci; François Luro; Patrick Ollitrault

A dinucleotide‐enriched genomic library was obtained from mandarin orange (Citrus reticulata Blanco). A subset of 101 positive clones was sequenced and primers were designed. The loci were screened for levels of variation using 26–29 wild mandarin oranges collected in Vietnam. Forty‐three loci were polymorphic with the number of alleles ranging from two to 18. The observed heterozygosity (HO) and expected heterozygosity (HE) were from 0.03 to 0.96 and from 0.03 to 0.92, respectively.


Advances in Botanical Research | 2008

Molecular Physiology of Development and Quality of Citrus

Francisco R. Tadeo; Manuel Cercós; José M. Colmenero-Flores; Domingo J. Iglesias; Miguel A. Naranjo; Gabino Ríos; Esther Carrera; Omar Ruiz-Rivero; Ignacio Lliso; Raphaël Morillon; Patrick Ollitrault; Manuel Talon

Abstract Citrus is the most economically important fruit crop in the world. Citrus fruits are classified as hesperidiums, berries of very special organization characterized by a juicy pulp made of vesicles within segments. Besides the typical fruit components, citrus fruit contain many organic compounds necessary for human diet and an extraordinary number of metabolites displaying valuable properties for health. In citrus, the concept of fruit quality comprises several other aspects intimately related to human health apart from physical attributes and diet components. Citrus also possess a rare combination of intriguing biological characteristics including an unusual reproductive biology, a non‐climacteric fruit ripening and several specific tree‐traits. The combination of these characteristics suggests that the study of fruit growth regulation in citrus may reveal original mechanisms based on explicit molecular differences and on exclusive genes. Citrus is, therefore, an excellent model to study fruit quality because of its peculiar fruiting, singular biochemistry and economical relevance. In this chapter, the progress that has been carried out in the research on the molecular determinants related to development and fruit quality of citrus is reviewed. The review also intends to provide a physiological frame for the implementation of the information generated during the past years. Molecular background is provided on the current status of principal reproductive processes related to fruit quality mainly flowering, fruiting, ripening, and abscission. We also have focused on main characteristic secondary bioactive compounds, as major contributors of aroma and flavour and finally, on the abiotic stresses influencing development and fruit growth.


Plant Cell Tissue and Organ Culture | 1997

Improvement of Citrus somatic embryo development by temporary immersion

Cécile Cabasson; Daniel Alvard; Dominique Dambier; Patrick Ollitrault; Claude Teisson

Liquid medium improves and facilitates somatic embryo development from Citrus deliciosa Ten. suspension cultures. Three different culture conditions were compared to determine a means of overcoming poor somatic embryo development. Somatic embryos derived from suspension cultures were plated on solid medium, maintained in suspension culture or temporarily immersed. About 60% of somatic embryos plated on solid medium developed to the cotyledonary stage, but were hyperhydric. Continuous growth in suspension culture at 100 rpm hindered cotyledon and protoderm formation, and somatic embryos were unable to develop beyond the globular stage. Temporary immersion promoted somatic embryo development, i.e. 66% of the somatic embryos produced were cotyledonary, and were morphologically similar to nucellar embryos. This latter culture system also improved regeneration synchronization by hampering secondary embryogenesis at the onset of germination. Irrespective of the culture system used, most cotyledonary somatic embryos studied had no caulinary meristem or starch and protein reserves, thus explaining the low germination rates obtained.

Collaboration


Dive into the Patrick Ollitrault's collaboration.

Top Co-Authors

Avatar

François Luro

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Dominique Dambier

Centre de coopération internationale en recherche agronomique pour le développement

View shared research outputs
Top Co-Authors

Avatar

Yann Froelicher

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Raphaël Morillon

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Luis Navarro

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar

Franck Curk

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Gilles Costantino

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Manuel Talon

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar

Samia Lotfy

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

José Juárez

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Researchain Logo
Decentralizing Knowledge