Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrick Perrin is active.

Publication


Featured researches published by Patrick Perrin.


Langmuir | 2010

Poly(N-isopropylacrylamide) microgels at the oil-water interface: interfacial properties as a function of temperature.

Cécile Monteux; Claire Marlière; Pauline Paris; Nadège Pantoustier; Nicolas Sanson; Patrick Perrin

Highly monodisperse poly(N-isopropylacrylamide), PNiPAM, microgels were prepared by the conventional radical polymerization of NiPAM in the presence of dimethylamino ethyl methacrylate (DMAEMA) monomers at various concentrations. The effect of DMAEMA on the polymerization of PNiPAM microgels was examined at constant initiator (V50) and cross-linker (MBA) concentrations. The presence of DMAEMA in the synthesis batch allows for the preparation of PNiPAM microgels with controlled size and a narrow size distribution. The oil(dodecane)/water interfacial properties of the model PNiPAM microgels were then investigated. The pendant drop technique was used to measure the interfacial tensions as a function of temperature. Over the whole range of temperature (20-45 degrees C), the interfacial tension remains low (on the order of 17 mN/m) and goes through a minimum (12 mN/m) at a temperature of about 34 degrees C, which well matches the volume phase transition temperature (VPTT) of PNiPAM microgels. Below the VPTT, the decrease in the interfacial tension with temperature is likely to be due to the adsorption of dense layers because of the decrease of the excluded volume interactions. Above the VPTT, we suggest that the increase in the interfacial tension with temperature comes from the adsorption of loosely packed PNiPAM microgels. We also studied the effect of temperature on the stability of emulsions. Dodecane in water emulsions, which form at ambient temperature, are destabilized as the temperature exceeds the VPTT. In light of the interfacial tension results, we suggest that emulsion destabilization arises from the adsorption of aggregates above the VPTT and not from an important desorption of microgels. Aggregate adsorption would bring a sufficiently high number of dodecane molecules into contact with water to induce coalescence without changing the interfacial tension very much.


Advanced Materials | 2013

Multiple Emulsions Controlled by Stimuli‐Responsive Polymers

Lucie Besnard; Frédéric Marchal; Jose F. Paredes; Jean Daillant; Nadège Pantoustier; Patrick Perrin; P. Guenoun

The phase inversion of water-toluene emulsions stabilized with a single thermo- and pH-sensitive copolymer occurs through the formation of multiple emulsions. At low pH and ambient temperature, oil in water emulsions are formed which transform into highly stable multiple emulsions at pHs immediately lower than the inversion border. At higher pHs, the emulsion turns into a water in oil one.


Langmuir | 2016

Self-Organization of Polystyrene-b-polyacrylic Acid (PS-b-PAA) Monolayer at the Air/Water Interface: A Process Driven by the Release of the Solvent Spreading

Zineb Guennouni; Fabrice Cousin; Marie-Claude Fauré; Patrick Perrin; D. Limagne; Oleg Konovalov; Michel Goldmann

We present an in situ structural study of the surface behavior of PS-b-PAA monolayers at the air/water interface at pH 2, for which the PAA blocks are neutral and using N,N-dimethyformamide (DMF) as spreading solvent. The surface pressure versus molecular area isotherm shows a perfectly reversible pseudoplateau over several cycles of compression/decompression. The width of such plateau enlarges when increasing temperature, conversely to what is classically observed in the case of an in-plane first order transition. We combined specular neutron reflectivity (SNR) experiments with contrast variation to solve the profile of each block perpendicular to the surface with grazing-incidence small-angle scattering (GISAXS) measurements to determine the in-plane structure of the layer. SNR experiments showed that both PS and PAA blocks remain adsorbed on the surface for all surface pressure probed. A correlation peak at Q(xy)* = 0.021 Å(-1) is evidenced by GISAXS at very low surface pressure which intensity first increases on the plateau. When compressing further, its intensity decays while Q(xy)* is shifted toward low Q(xy). The peak fully disappears at the end of the plateau. These results are interpreted by the formation of surface aggregates induced by DMF molecules at the surface. These DMF molecules remain adsorbed within the PS core of the aggregates. Upon compression, they are progressively expelled from the monolayer, which gives rise to the pseudoplateau on the isotherm. The intensity of the GISAXS correlation peak is set by the amount of DMF within the monolayer as it vanishes when all DMF molecules are expelled. This result emphizes the role of the solvent in Langmuir monolayer formed by amphiphilic copolymers which hydrophobic and hydrophilic parts are composed by long polymer chains.


Langmuir | 2016

Biocompatible Stimuli-Responsive W/O/W Multiple Emulsions Prepared by One-Step Mixing with a Single Diblock Copolymer Emulsifier

Marine Protat; Noémie Bodin; Florent Malloggi; Jean Daillant; Nadège Pantoustier; P. Guenoun; Patrick Perrin

Multiple water-in-oil-in-water (W/O/W) emulsions are promising materials in designing carriers of hydrophilic molecules or drug delivery systems, provided stability issues are solved and biocompatible chemicals can be used. In this work, we designed a biocompatible amphiphilic copolymer, poly(dimethylsiloxane)-b-poly(2-(dimethylamino)ethyl methacrylate) (PDMS-b-PDMAEMA), that can stabilize emulsions made with various biocompatible oils. The hydrophilic/hydrophobic properties of the copolymer can be adjusted using both pH and ionic strength stimuli. Consequently, the making of O/W (oil in water), W/O (water in oil), and W/O/W emulsions can be achieved by sweeping the pH and ionic strength. Of importance, W/O/W emulsions are formulated over a large pH and ionic strength domain in a one-step emulsification process via transitional phase inversion and are stable for several months. Cryo-TEM and interfacial tension studies show that the formation of these W/O/W emulsions is likely to be correlated to the interfacial film curvature and microemulsion morphology.


Langmuir | 2016

Interfacial Rheology of Hydrogen-Bonded Polymer Multilayers Assembled at Liquid Interfaces: Influence of Anchoring Energy and Hydrophobic Interactions

Sandrine Le Tirilly; Corentin Trégouët; Mathilde Reyssat; Stéphane Bône; Cédric Geffroy; Gerald G. Fuller; Nadège Pantoustier; Patrick Perrin; Cécile Monteux

We study the 2D rheological properties of hydrogen-bonded polymer multilayers assembled directly at dodecane-water and air-water interfaces using pendant drop/bubble dilation and the double-wall ring method for interfacial shear. We use poly(vinylpyrrolidone) (PVP) as a proton acceptor and a series of polyacrylic acids as proton donors. The PAA series of chains with varying hydrophobicity was fashioned from poly(acrylic acid), (PAA), polymethacrylic acid (PMAA), and a homemade hydrophobically modified polymer. The latter consisted of a PAA backbone covalently grafted with C12 moieties at 1% mol (referred to as PAA-1C12). Replacing PAA with the more hydrophobic PMAA provides a route for combining hydrogen bonding and hydrophobic interactions to increase the strength and/or the number of links connecting the polyacid chains to PVP. This systematic replacement allows for control of the ability of the monomer units inside the absorbed polymer layer to reorganize as the interface is sheared or compressed. Consequently, the interplay of hydrogen bonding and hydrophobic interactions leads to control of the resistance of the polymer multilayers to both shear and dilation. Using PAA-1C12 as the first layer improves the anchoring energy of a few monomers of the chain without changing the strength of the monomer-monomer contact in the complex layer. In this way, the layer does not resist shear but resists compression. This strategy provides the means for using hydrophobicity to control the interfacial dynamics of the complexes adsorbed at the interface of the bubbles and droplets that either elongate or buckle upon compression. Moreover, we demonstrate the pH responsiveness of these interfacial multilayers by adding aliquots of NaOH to the acidic water subphase surrounding the bubbles and droplets. Subsequent pH changes can eventually break the polymer complex, providing opportunities for encapsulation/release applications.


Langmuir | 2017

Coupled Effects of Spreading Solvent Molecules and Electrostatic Repulsions on the Behavior of PS-b-PAA Monolayers at the Air–Water Interface

Zineb Guennouni; Michel Goldmann; Marie-Claude Fauré; Philippe Fontaine; Patrick Perrin; D. Limagne; Fabrice Cousin

We describe the surface behavior of PS-b-PAA monolayers at the air/water interface using N,N-dimethyformamide (DMF) as spreading solvent. At low pH, when the PAA blocks are neutral, the surface pressure versus molecular area isotherm shows a pseudoplateau associated with the presence of remaining spreading solvent molecules in the monolayer, as we described in a former study (Guennouni et al., Langmuir, 2016). We show here that the width of the plateau decreases when increasing pH up to its complete disappearance at high pH, when PAA blocks are fully charged, although two regimes of compressibilities on the isotherm still exist. A refined structural study at pH 9 combining specular neutron reflectivity (SNR), grazing-incidence small-angle X-ray scattering (GISAXS), and atomic force microscopy (AFM) in liquid measurements shows that (i) PAA blocks are stretched in solution, as expected from polyelectrolyte brushes in the osmotic regime; (ii) the system undergoes a spinodal decomposition during deposit at the air/water interface in the presence of DMF. Upon compression, the Qxy* position of the peak associated with the spinodal structure remains almost constant but its intensity evolves strongly and passes through a maximum at intermediate pressures. This reveals two operating processes in the system: strong electrostatic repulsions between chains that prevent in-plane reorganizations and force such reorganizations to occur from the surface to the volume and progressive expulsion of the DMF molecules from the monolayer. These processes have antagonist effects on the intensity of the peak: the increase of the repulsions makes it more pronounced, whereas the expulsion of solvent makes it vanish due to the loss of contrast.


Journal of Physical Chemistry B | 2010

Light-Responsiveness of C12E6/Polymer Complexes Swollen with Dodecane

Elise Rotureau; Christophe Tribet; S. Fouilloux; P. Marchal; V. Sadtler; E. Marie-Bégué; Alain Durand; Patrick Perrin

The association behavior of light-responsive azobenzene modified poly(sodium acrylate)s (AMPs) with C(12)E(6) (hexa-oxyethyleneglycol n-dodecyl ether) surfactant micelles swollen with dodecane was investigated using dynamic light scattering, UV spectrophotometry, and capillary electrophoresis techniques. AMPs complexes with oligoethyleneglycol n-alkyl ether show promising properties as emulsifiers for the light-triggered control of inversion of emulsions and the present work aims at giving new insights with respect to the nature of their photoresponse. Depending on the dodecane amount, the size of the spherical surfactant micelles was varied with radii ranging from 4 to 8 nm. AMPs can be viewed as long PAANa chains bearing several randomly distributed azobenzene groups. First, the binding behavior of the AMPs chains to the micelles swollen with various amounts of oil was thoroughly studied under dark-adapted conditions, which means that most azobenzene groups are in their trans conformation (less polar than the cis conformation obtained under UV irradiation). The binding of azobenzene to surfactant micelles, which leads to the formation of AMPs/surfactant complexes, is controlled by the energy of transfer of the azobenzene moiety from water to the micelle core and by the energy of loops formation since multiple attachments of azobenzene to a single micelle are expected with long AMPs chains. We show that the change in the energy of transfer of the azobenzene group between water and micelles upon increasing the amount of dodecane within the core of micelles was quite weak (not exceeding 0.7 kT). Within the investigated range of curvature, we observed that the energy of loops formation, which decreases with increasing micelle size (decrease of curvature or increase of oil amount) was similarly weak. The effect of the presence of dodecane on the photoresponse of the complex formation was investigated. It is shown that exposure to UV light markedly weakens the association of the AMPs with surfactant within a domain of surfactant concentrations much larger for swollen micelles than for pure surfactant micelles. Consequently, we suggest that emulsion inversion triggered by light could be due to the photomodulation of the binding of AMPs to colloidal objects with various and/or specific curvatures including surfactant mesophases or small size emulsion droplets.


THE XV INTERNATIONAL CONGRESS ON RHEOLOGY: The Society of Rheology 80th Annual#N#Meeting | 2008

Aqueous Formulations of Associating Polymers: Thermothinning versus Thermothickening.

Dominique Hourdet; Manohar V. Badiger; Jayant Gadgil; N. Padmanabha Iyer; Patrick Perrin; Prakash P. Wadgaonkar

Self‐assembling and viscoelastic properties of thermothinning and thermothickening copolymers are described in semi‐dilute aqueous solutions. Using grafted architectures derived from poly(sodium acrylate), we also investigate the possibilities to combine alkyl and LCST stickers, either grafted on different polymer chains or incorporated into the same macromolecule (double grafted copolymers), to control the temperature dependence of aqueous based formulations.


Langmuir | 2007

Synthesis and Swelling Behavior of pH-Responsive Polybase Brushes

S. Sanjuan; Patrick Perrin; and N. Pantoustier; Y. Tran


Archive | 1998

Invertible emulsions stabilised by amphiphilic polymers and application to bore fluids

Nathalie Monfreux; Patrick Perrin; Françoise Lafuma; Christopher Sawdon

Collaboration


Dive into the Patrick Perrin's collaboration.

Top Co-Authors

Avatar

Pascal Hébraud

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dominique Hourdet

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Fabrice Cousin

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Jean Daillant

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

P. Guenoun

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Manohar V. Badiger

Council of Scientific and Industrial Research

View shared research outputs
Top Co-Authors

Avatar

Prakash P. Wadgaonkar

Council of Scientific and Industrial Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge