Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrick Roncarati is active.

Publication


Featured researches published by Patrick Roncarati.


Carcinogenesis | 2008

Silencing of E7 oncogene restores functional E-cadherin expression in human papillomavirus 16-transformed keratinocytes

Jean-Hubert Caberg; Pascale Hubert; Dominique Begon; Michael Herfs; Patrick Roncarati; Jacques Boniver; Philippe Delvenne

Human papillomavirus (HPV) infection, particularly type 16, is causally associated with cancer of the uterine cervix. The persistence or progression of cervical lesions suggests that viral antigens are not adequately presented to the immune system. This hypothesis is reinforced by the observation that most squamous intra-epithelial lesions show quantitative and functional alterations of Langerhans cells (LCs). Moreover, E-cadherin-dependent adhesion of LC to keratinocytes (KCs) is defective in cervical HPV16-associated (pre)neoplastic lesions. The possible role of viral oncoprotein E7 in the reduced levels of cell surface E-cadherin was investigated by silencing HPV16 E7 by RNA interference (siRNA). This treatment induced an increased cell surface E-cadherin expression in HPV16-positive KC and a significant adhesion of LC to these squamous cells. The E-cadherin re-expression following HPV16 E7 silencing was associated with increased detection levels of retinoblastoma protein and the activating protein (AP)-2alpha transcription factor. These data suggest that HPV16 E7-induced alterations of LC/KC adhesion may play a role in the defective immune response during cervical carcinogenesis.


Cancer Immunology, Immunotherapy | 2009

High expression of PGE2 enzymatic pathways in cervical (pre)neoplastic lesions and functional consequences for antigen-presenting cells

Michael Herfs; Ludivine Herman; Pascale Hubert; Frédéric Minner; Mohammad Arafa; Patrick Roncarati; Yves Henrotin; Jacques Boniver; Philippe Delvenne

Although human papillomavirus (HPV) DNA is detected in the majority of squamous intraepithelial lesions (SIL) and carcinoma (SCC) of the uterine cervix, the persistence or progression of cervical lesions suggest that viral antigens are not adequately presented to the immune system. This hypothesis is reinforced by the observation that most SIL show quantitative and functional alterations of Langerhans cells (LC). The aim of this study was to determine whether prostaglandins (PG) may affect LC density in the cervical (pre)neoplastic epithelium. We first demonstrated that the epithelial expression of PGE2 enzymatic pathways, including cyclooxygenase-2 (COX-2) and microsomal prostaglandin E synthase 1 (mPGES-1), is higher in SIL and SCC compared to the normal exocervical epithelium and inversely correlated to the density of CD1a-positive LC. By using cell migration assays, we next showed that the motility of immature dendritic cells (DC) and DC partially differentiated in vitro in the presence of PGE2 are differentially affected by PGE2. Immature DC had a lower ability to migrate in the presence of PGE2 compared to DC generated in vitro in the presence of PGE2. Finally, we showed that PGE2 induced a cytokine production profile and phenotypical features of tolerogenic DC, suggesting that the altered expression of PGE2 enzymatic pathways may promote the cervical carcinogenesis by favouring (pre)cancer immunotolerance.


Nature Communications | 2014

NF-κB-induced KIAA1199 promotes survival through EGFR signalling

Kateryna Shostak; Xin Zhang; Pascale Hubert; Serkan Göktuna; Zheshen Jiang; Iva Klevernic; Julien Hildebrand; Patrick Roncarati; Benoit Hennuy; Aurélie Ladang; Joan Somja; André Gothot; Pierre Close; Philippe Delvenne; Alain Chariot

Constitutive activation of EGFR- and NF-κB-dependent pathways is a hallmark of cancer, yet signalling proteins that connect both oncogenic cascades are poorly characterized. Here we define KIAA1199 as a BCL-3- and p65-dependent gene in transformed keratinocytes. KIAA1199 expression is enhanced on human papillomavirus (HPV) infection and is aberrantly expressed in clinical cases of cervical (pre)neoplastic lesions. Mechanistically, KIAA1199 binds Plexin A2 and protects from Semaphorin 3A-mediated cell death by promoting EGFR stability and signalling. Moreover, KIAA1199 is an EGFR-binding protein and KIAA1199 deficiency impairs EGF-dependent Src, MEK1 and ERK1/2 phosphorylations. Therefore, EGFR stability and signalling to downstream kinases requires KIAA1199. As such, KIAA1199 promotes EGF-mediated epithelial–mesenchymal transition (EMT). Taken together, our data define KIAA1199 as an oncogenic protein induced by HPV infection and constitutive NF-κB activity that transmits pro-survival and invasive signals through EGFR signalling.


Cancer Immunology, Immunotherapy | 2009

Increased migration of Langerhans cells in response to HPV16 E6 and E7 oncogene silencing: role of CCL20

Jean-Hubert Caberg; Pascale Hubert; Ludivine Herman; Michael Herfs; Patrick Roncarati; Jacques Boniver; Philippe Delvenne

Human papillomavirus (HPV) infection, particularly type 16, is causally associated with cancer of the uterine cervix. The persistence or progression of cervical lesions suggests that viral antigens are not adequately presented to the immune system. This hypothesis is reinforced by the observation that most squamous intraepithelial lesions (SILs) show quantitative and functional alterations of Langerhans cells (LC). The infiltration of immature LC in the squamous epithelium is mainly controlled by Macrophage Inflammatory Protein 3α/CCL20. After having shown that CCL20 production is altered in HPV-transformed keratinocytes (KC), the possible role of HPV16 E6 and E7 viral oncoproteins in the reduced CCL20 levels observed in SILs was investigated by silencing HPV16 E6 and E7 oncogenes by RNA interference (siRNA). This treatment not only increased CCL20 secretion but also resulted in the modulation of NF-κB p50, p52 and p65 precursor localization. Moreover, silencing of E6 and E7 oncogenes in HPV16-transformed KC induced a significantly higher migratory capacity of LC in a Boyden chamber assay and in an in vitro formed (pre)neoplastic epithelium reminiscent of high-grade SILs. Anti-CCL20 neutralizing antibody experiments showed that the increased migration of LC is due to the re-expression of CCL20 in E6 and E7 siRNA transfected KC. These data suggest that HPV16 E6/E7-induced down-regulation of CCL20 observed during the cervical carcinogenesis may contribute to a diminished capacity of the immune system to control HPV infection.


The Journal of Pathology | 2015

Carcinogenic HPV infection in the cervical squamo-columnar junction

Jelena Mirkovic; Brooke E. Howitt; Patrick Roncarati; Stéphanie Demoulin; Meggy Suarez-Carmona; Pascale Hubert; Frank McKeon; Wa Xian; Anita Li; Philippe Delvenne; Christopher P. Crum; Michael Herfs

Recent studies have suggested the involvement of a unique population of cells at the cervical squamo‐columnar junction (SCJ) in the pathogenesis of early (squamous intraepithelial lesion or SIL) and advanced (squamous cell and adeno‐carcinomas) cervical neoplasia. However, there is little evidence to date showing that SCJ cells harbour carcinogenic HPV or are instrumental in the initial phases of neoplasia. This study was designed to (1) determine if normal‐appearing SCJ cells contained evidence of carcinogenic HPV infection and (2) trace their transition to early SIL. Sections of cervix from high‐risk reproductive age women were selected and SCJ cells were analysed by using several techniques which increasingly implicated HPV infection: HPV DNA (genotyping and in situ hybridization)/RNA (PCR), immunostaining for HPV16 E2 (an early marker of HPV infection), p16ink4, Ki67, and HPV L1 protein. In 22 cases with a history of SIL and no evidence of preneoplastic lesion in the excision specimen, HPV DNA was isolated from eight of ten with visible SCJ cells, six of which were HPV16/18 DNA‐positive. In five of these latter cases, the SCJ cells were positive for p16ink4 and/or HPV E2. Transcriptionally active HPV infection (E6/E7 mRNAs) was also detected in microdissected SCJ cells. Early squamous atypia associated with the SCJ cells demonstrated in addition diffuse p16ink4 immunoreactivity, elevated proliferative index, and rare L1 antigen positivity. We present for the first time direct evidence that normal‐appearing SCJ cells can be infected by carcinogenic HPV. They initially express HPV E2 and their progression to SIL is heralded by an expanding metaplastic progeny with increased proliferation and p16ink4 expression. Whether certain SCJs are more vulnerable than others to carcinogenic HPV genotypes and what variables determine transition to high‐grade SIL remain unresolved, but the common event appears to be a vulnerable cell at the SCJ. Copyright


Experimental Hematology | 2012

Production of large numbers of plasmacytoid dendritic cells with functional activities from CD34+ hematopoietic progenitor cells: Use of interleukin-3

St ephanie Demoulin; Patrick Roncarati; Philippe Delvenne; Pascale Hubert

Plasmacytoid dendritic cells (pDC), a subset of dendritic cells characterized by a rapid and massive type-I interferon secretion through the Toll-like receptor pathway in response to viral infection, play important roles in the pathogenesis of several diseases, such as chronic viral infections (e.g., hepatitis C virus, human immunodeficiency virus), autoimmunity (e.g., psoriasis, systemic lupus erythematosus), and cancer. As pDC represent a rare cell type in the peripheral blood, the goal of this study was to develop a new method to efficiently generate large numbers of cells from a limited number of CD34(+) cord blood progenitors to provide a tool to resolve important questions about how pDC mediate tolerance, autoimmunity, and cancer. Human CD34(+) hematopoietic progenitor cells isolated from cord blood were cultured with a combination of Flt3-ligand (Flt3L), thrombopoietin (TPO), and one of the following cytokine: interleukin (IL)-3, interferon-β(IFN-β), or prostaglandin E2(PGE(2)). Cells obtained in the different culture conditions were analyzed for their phenotype and functional characteristics. The addition of IL-3 cooperates with Flt3L and TPO in the induction of pDC from CD34(+) hematopoietic progenitor cells. Indeed, Flt3L/TPO alone or supplemented with prostaglandin E2 or interferon-β produced smaller amounts of pDC from hematopoietic progenitor cells. In addition, pDC generated in Flt3L/TPO/IL-3 cultures exhibited morphological, immunohistochemical, and functional features of peripheral blood pDC. We showed that IL-3, in association with Flt3L and TPO, provides an advantageous tool for large-scale generation of pDC. This culture condition generated, starting from 2 × 10(5) CD34(+) cells, up to 2.6 × 10(6) pDC presenting features of blood pDC.


The Journal of Pathology | 2014

Altered alpha-defensin 5 expression in cervical squamocolumnar junction: implication in the formation of a viral/tumour-permissive microenvironment

Pascale Hubert; Ludivine Herman; Patrick Roncarati; Catherine Maillard; Virginie Renoux; Stéphanie Demoulin; Charlotte Erpicum; Jean-Michel Foidart; Jacques Boniver; Agnès Noël; Philippe Delvenne; Michael Herfs

Human papillomavirus (HPV) infection, particularly type 16, is causally associated with cancer of the uterine cervix, which mainly develops at the squamocolumnar (SC) junction. The progression of cervical HPV infections into (pre)neoplastic lesions suggests that viral antigens are not adequately recognized by innate immunity or presented to the adaptive immune system. Members of the defensin family have recently been found to inhibit viral and bacterial pathogens, to stimulate the migration of immune cells and to play a role in anticancer responses. In the present study, we focused on the poorly characterized human α‐defensin 5 (HD‐5) and its possible role in these processes. We showed that HD‐5 was able to prevent HPV virion entry into cervical keratinocytes and to influence adaptive immunity. Indeed, this peptide specifically induced the chemoattraction and proliferation of both activated T lymphocytes and immature dendritic cells in a CCR2/CCR6‐dependent manner and stimulated the infiltration of these professional antigen‐presenting cells in a (pre)neoplastic epithelium transplanted in vivo in immunodeficient mice. No chemotactic effect was observed with plasmacytoid dendritic cells, macrophages or natural killer cells. Proliferative and angiogenic effects of HD‐5 were also assessed in vitro and in vivo. However there was a striking regional disparity in expression of HD‐5, being prominent in ectocervical, vaginal and vulvar neoplasia, while absent, or nearly so, in the cervical SC junction. Taken together, these results suggest one possible explanation for why the SC junction is uniquely vulnerable to both high‐risk HPV infection (via reduced HD‐5 expression and viral entry) and progression of neoplasia (via altered cell‐mediated immune responses and altered microenvironment). Copyright


OncoImmunology | 2015

Cervical (pre)neoplastic microenvironment promotes the emergence of tolerogenic dendritic cells via RANKL secretion.

Stéphanie Demoulin; Joan Somja; Anaëlle Duray; Samuel Guenin; Patrick Roncarati; Philippe Delvenne; Michael Herfs; Pascale Hubert

The progression of genital human papillomavirus (HPV) infections into preneoplastic lesions suggests that infected/malignant cells are not adequately recognized by the immune system. In this study, we demonstrated that cervical/vulvar cancer cells secrete factor(s) that affect both the maturation and function of dendritic cells (DC) leading to a tolerogenic profile. Indeed, DC cocultured with cancer cell lines display both a partially mature phenotype after lipopolysaccharide (LPS) maturation and an altered secretory profile (IL-10high and IL-12p70low). In addition, tumor-converted DC acquire the ability to alter T-cell proliferation and to induce FoxP3+ suppressive T cells from naive CD4+ T cells. Among the immunosuppressive factors implicated in DC alterations in genital (pre)neoplastic microenvironment, we identified receptor activator of nuclear factor kappa-B ligand (RANKL), a TNF family member, as a potential candidate. For the first time, we showed that RANKL expression strongly increases during cervical progression. We also confirmed that RANKL is directly secreted by cancer cells and this expression is not related to HPV viral oncoprotein induction. Interestingly, the addition of osteoprotegerin (OPG) in coculture experiments reduces significantly the inhibition of DC maturation, the release of a tolerogenic cytokine profile (IL-12low IL-10high) and the induction of regulatory T (Treg) cells. Our findings suggest that the use of inhibitory molecules directed against RANKL in cervical/vulvar (pre)neoplastic lesions might prevent alterations of DC functionality and represent an attractive strategy to overcome immune tolerance in such cancers.


The Journal of Pathology | 2017

Proteomic signatures reveal a dualistic and clinically relevant classification of anal canal carcinoma

Michael Herfs; Rémi Longuespée; Charles M. Quick; Patrick Roncarati; Meggy Suarez-Carmona; Pascale Hubert; Alizée Lebeau; Diane Bruyère; Gabriel Mazzucchelli; Nicolas Smargiasso; Dominique Baiwir; Keith Lai; Andrew Dunn; Fabiola Obregon; Eric Yang; Edwin De Pauw; Christopher P. Crum; Philippe Delvenne

Aetiologically linked to HPV infection, malignancies of the anal canal have substantially increased in incidence over the last 20 years. Although most anal squamous cell carcinomas (SCCs) respond well to chemoradiotherapy, about 30% of patients experience a poor outcome, for undetermined reasons. Despite cumulative efforts for discovering independent predictors of overall survival, both nodal status and tumour size are still the only reliable factors predicting patient outcome. Recent efforts have revealed that the biology of HPV‐related lesions in the cervix is strongly linked to the originally infected cell population. To address the hypothesis that topography also influences both gene expression profile and behaviour of anal (pre)neoplastic lesions, we correlated both proteomic signatures and clinicopathological features of tumours arising from two distinct portions of the anal canal: the lower part (squamous zone) and the more proximal anal transitional zone. Although microdissected cancer cells appeared indistinguishable by morphology (squamous phenotype), unsupervised clustering analysis of the whole proteome significantly highlighted the heterogeneity that exists within anal canal tumours. More importantly, two region‐specific subtypes of SCC were revealed. The expression profile (sensitivity/specificity) of several selected biomarkers (keratin filaments) further confirmed the subclassification of anal (pre)cancers based on their cellular origin. Less commonly detected compared to their counterparts located in the squamous mucosa, SCCs originating in the transitional zone more frequently displayed a poor or basaloid differentiation, and were significantly correlated with reduced disease‐free and overall survivals. Taken together, we present direct evidence that anal canal SCC comprises two distinct entities with different cells of origin, proteomic signatures, and survival rates. This study forms the basis for a dualistic classification of anal carcinoma, with implications for management, outcome expectations, and possibly therapy. Copyright


American Journal of Pathology | 2013

Dendritic cells in Barrett's esophagus carcinogenesis: an inadequate microenvironment for antitumor immunity?

Joan Somja; Stéphanie Demoulin; Patrick Roncarati; Michael Herfs; Noëlla Bletard; Philippe Delvenne; Pascale Hubert

Barretts esophagus corresponds to the replacement of the normal esophageal squamous epithelium by a columnar epithelium through a metaplastic process. This tissue remodeling is associated with chronic gastroesophageal reflux and constitutes a premalignant lesion leading to a 30- to 60-fold increase in the risk to evolve into esophageal adenocarcinoma. The present study aimed to investigate a possible immune evasion in Barretts esophagus favoring esophageal adenocarcinoma development. We demonstrated that myeloid and plasmacytoid dendritic cells are recruited during the esophageal metaplasia-dysplasia-carcinoma sequence, through the action of their chemoattractants, macrophage inflammatory protein 3α and chemerin. Next, we showed that, in contrast to plasmacytoid dendritic cells, myeloid dendritic cells, co-cultured with Barretts esophagus and esophageal adenocarcinoma cell lines, display a tolerogenic phenotype. Accordingly, myeloid dendritic cells co-cultured with esophageal adenocarcinoma cell lines stimulated regulatory T cell differentiation from naïve CD4(+) T cells. In agreement with those results, we observed that both metaplastic areas and (pre)malignant lesions of the esophagus are infiltrated by regulatory T cells. In conclusion, soluble factors secreted by epithelial cells during the esophageal metaplasia-dysplasia-carcinoma sequence influence dendritic cell distribution and promote tumor progression by rendering them tolerogenic.

Collaboration


Dive into the Patrick Roncarati's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge