Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrick Rump is active.

Publication


Featured researches published by Patrick Rump.


Nature Genetics | 2012

Germline mutations in DIS3L2 cause the Perlman syndrome of overgrowth and Wilms tumor susceptibility.

Dewi Astuti; Mark R. Morris; Wendy N. Cooper; Raymond H.J. Staals; Naomi C. Wake; Graham Fews; Harmeet Gill; Dean Gentle; Salwati Shuib; Christopher J. Ricketts; Trevor Cole; Anthonie J. van Essen; Richard A. van Lingen; Giovanni Neri; John M. Opitz; Patrick Rump; Irene Stolte-Dijkstra; Ferenc Müller; Ger J. M. Pruijn; Farida Latif; Eamonn R. Maher

Perlman syndrome is a congenital overgrowth syndrome inherited in an autosomal recessive manner that is associated with Wilms tumor susceptibility. We mapped a previously unknown susceptibility locus to 2q37.1 and identified germline mutations in DIS3L2, a homolog of the Schizosaccharomyces pombe dis3 gene, in individuals with Perlman syndrome. Yeast dis3 mutant strains have mitotic abnormalities. Yeast Dis3 and its human homologs, DIS3 and DIS3L1, have exoribonuclease activity and bind to the core RNA exosome complex. DIS3L2 has a different intracellular localization and lacks the PIN domain found in DIS3 and DIS3L1; nevertheless, we show that DIS3L2 has exonuclease activity. DIS3L2 inactivation was associated with mitotic abnormalities and altered expression of mitotic checkpoint proteins. DIS3L2 overexpression suppressed the growth of human cancer cell lines, and knockdown enhanced the growth of these cells. We also detected evidence of DIS3L2 mutations in sporadic Wilms tumor. These observations suggest that DIS3L2 has a critical role in RNA metabolism and is essential for the regulation of cell growth and division.


American Journal of Medical Genetics Part A | 2005

Tumor risk in Beckwith-Wiedemann syndrome: A review and meta-analysis

Patrick Rump; Mpa Zeegers; van Ton Essen

Beckwith–Wiedemann syndrome (BWS) is an overgrowth syndrome associated with macroglossia, abdominal wall defects, ear anomalies, and an increased risk for embryonic tumors. Reported tumor risk estimates vary between 4% and 21%. It has been hypothesized that tumor predisposition in BWS is related to the imprinting status of the H19 and LIT1 genes on chromosome 11p15. A loss of imprinting (LOI) of H19 implies a higher tumor risk. However, a systematic analysis of available data is lacking. Therefore, we performed a review and meta‐analysis of reported associations between the imprinting status of the LIT1 and H19 genes and the risk for tumor development in BWS. Five publications suitable for meta‐analysis were identified by electronic database searches. Sufficient data were available for 402 out of 520 patients. Patients were divided into four groups based on the imprinting status of H19 and LIT1: group I with LOI of LIT1 (45%); group II with LOI of H19 (9%); group III with LOI of LIT1 and LOI of H19 (21%); and group IV with normal imprinting patterns (26%). Differences in tumor risk between groups were studied with random effects meta‐analysis. Tumors occurred in 55 patients. The odds of tumor development was significantly lower in group I when compared to group II (OR = 0.06; 95% CI: 0.02–0.21) and group III (OR = 0.12; 95% CI: 0.04–0.37). Tumor risk did not differ significantly between groups II and III (OR = 1.40; 95% CI: 0.56–3.50). Compared to group IV, tumor risk was significantly lower in group I (OR = 0.33; 95% CI: 0.12–0.87) and higher in groups II (OR = 4.0; 95% CI: 1.5–10.4) and III (OR = 2.6; 95% CI: 1.2–5.7). Tumor incidence rate for group IV was 10.6% (95% CI: 3.6–17.7). Calculated absolute risks were 3% for group I, 43% for group II, and 28% for group III, respectively. No Wilms tumor was seen in group I. In total, other tumors were seen with comparable frequencies in groups I–III. The results show a strong association between a LOI of H19 and especially Wilms tumor development in BWS.


Journal of Medical Genetics | 2006

A molecular and clinical study of Larsen syndrome caused by mutations in FLNB

Louise S. Bicknell; Claire Farrington-Rock; Yousef Shafeghati; Patrick Rump; Yasemin Alanay; Yves Alembik; Navid Al-Madani; Helen V. Firth; Mohammad Hassan Karimi-Nejad; Chong Ae Kim; Kathryn Leask; Melissa Maisenbacher; Ellen Moran; John G. Pappas; Paolo Prontera; Thomy de Ravel; Jean-Pierre Fryns; Elizabeth Sweeney; Alan Fryer; Sheila Unger; Louise C. Wilson; Ralph S. Lachman; David L. Rimoin; Daniel H. Cohn; Deborah Krakow; Stephen P. Robertson

Background: Larsen syndrome is an autosomal dominant osteochondrodysplasia characterised by large-joint dislocations and craniofacial anomalies. Recently, Larsen syndrome was shown to be caused by missense mutations or small inframe deletions in FLNB, encoding the cytoskeletal protein filamin B. To further delineate the molecular causes of Larsen syndrome, 20 probands with Larsen syndrome together with their affected relatives were evaluated for mutations in FLNB and their phenotypes studied. Methods: Probands were screened for mutations in FLNB using a combination of denaturing high-performance liquid chromatography, direct sequencing and restriction endonuclease digestion. Clinical and radiographical features of the patients were evaluated. Results and discussion: The clinical signs most frequently associated with a FLNB mutation are the presence of supernumerary carpal and tarsal bones and short, broad, spatulate distal phalanges, particularly of the thumb. All individuals with Larsen syndrome-associated FLNB mutations are heterozygous for either missense or small inframe deletions. Three mutations are recurrent, with one mutation, 5071G→A, observed in 6 of 20 subjects. The distribution of mutations within the FLNB gene is non-random, with clusters of mutations leading to substitutions in the actin-binding domain and filamin repeats 13–17 being the most common cause of Larsen syndrome. These findings collectively define autosomal dominant Larsen syndrome and demonstrate clustering of causative mutations in FLNB.


Nature Neuroscience | 2016

Meta-analysis of 2,104 trios provides support for 10 new genes for intellectual disability

Stefan H. Lelieveld; Margot R.F. Reijnders; Rolph Pfundt; Helger G. Yntema; Erik-Jan Kamsteeg; Petra de Vries; Bert B.A. de Vries; Marjolein H. Willemsen; Tjitske Kleefstra; Katharina Löhner; Maaike Vreeburg; Servi J.C. Stevens; Ineke van der Burgt; Ernie M.H.F. Bongers; Alexander P.A. Stegmann; Patrick Rump; Tuula Rinne; Marcel R. Nelen; Joris A. Veltman; Lisenka E.L.M. Vissers; Han G. Brunner; Christian Gilissen

To identify candidate genes for intellectual disability, we performed a meta-analysis on 2,637 de novo mutations, identified from the exomes of 2,104 patient–parent trios. Statistical analyses identified 10 new candidate ID genes: DLG4, PPM1D, RAC1, SMAD6, SON, SOX5, SYNCRIP, TCF20, TLK2 and TRIP12. In addition, we show that these genes are intolerant to nonsynonymous variation and that mutations in these genes are associated with specific clinical ID phenotypes.


Lancet Neurology | 2014

The genetic basis of DOORS syndrome: an exome-sequencing study

Philippe M. Campeau; Dalia Kasperaviciute; James T. Lu; Lindsay C. Burrage; Choel Kim; Mutsuki Hori; Berkley R. Powell; Fiona Stewart; Temis Maria Felix; Jenneke van den Ende; Marzena Wisniewska; Huelya Kayserili; Patrick Rump; Sheela Nampoothiri; Salim Aftimos; Antje Mey; Lal. D.V. Nair; Michael L. Begleiter; Isabelle De Bie; Girish Meenakshi; Mitzi L. Murray; Gabriela M. Repetto; Mahin Golabi; Edward Blair; Alison Male; Fabienne Giuliano; Ariana Kariminejad; William G. Newman; Sanjeev Bhaskar; Jonathan E. Dickerson

Summary Background Deafness, onychodystrophy, osteodystrophy, mental retardation, and seizures (DOORS) syndrome is a rare autosomal recessive disorder of unknown cause. We aimed to identify the genetic basis of this syndrome by sequencing most coding exons in affected individuals. Methods Through a search of available case studies and communication with collaborators, we identified families that included at least one individual with at least three of the five main features of the DOORS syndrome: deafness, onychodystrophy, osteodystrophy, intellectual disability, and seizures. Participants were recruited from 26 centres in 17 countries. Families described in this study were enrolled between Dec 1, 2010, and March 1, 2013. Collaborating physicians enrolling participants obtained clinical information and DNA samples from the affected child and both parents if possible. We did whole-exome sequencing in affected individuals as they were enrolled, until we identified a candidate gene, and Sanger sequencing to confirm mutations. We did expression studies in human fibroblasts from one individual by real-time PCR and western blot analysis, and in mouse tissues by immunohistochemistry and real-time PCR. Findings 26 families were included in the study. We did exome sequencing in the first 17 enrolled families; we screened for TBC1D24 by Sanger sequencing in subsequent families. We identified TBC1D24 mutations in 11 individuals from nine families (by exome sequencing in seven families, and Sanger sequencing in two families). 18 families had individuals with all five main features of DOORS syndrome, and TBC1D24 mutations were identified in half of these families. The seizure types in individuals with TBC1D24 mutations included generalised tonic-clonic, complex partial, focal clonic, and infantile spasms. Of the 18 individuals with DOORS syndrome from 17 families without TBC1D24 mutations, eight did not have seizures and three did not have deafness. In expression studies, some mutations abrogated TBC1D24 mRNA stability. We also detected Tbc1d24 expression in mouse phalangeal chondrocytes and calvaria, which suggests a role of TBC1D24 in skeletogenesis. Interpretation Our findings suggest that mutations in TBC1D24 seem to be an important cause of DOORS syndrome and can cause diverse phenotypes. Thus, individuals with DOORS syndrome without deafness and seizures but with the other features should still be screened for TBC1D24 mutations. More information is needed to understand the cellular roles of TBC1D24 and identify the genes responsible for DOORS phenotypes in individuals who do not have a mutation in TBC1D24. Funding US National Institutes of Health, the CIHR (Canada), the NIHR (UK), the Wellcome Trust, the Henry Smith Charity, and Action Medical Research.


Neurogenetics | 2011

Social responsiveness scale-aided analysis of the clinical impact of copy number variations in autism

Emma van Daalen; Chantal Kemner; Nienke E. Verbeek; Bert van der Zwaag; Trijntje Dijkhuizen; Patrick Rump; Renske H. Houben; Ruben van 't Slot; Maretha V. de Jonge; Wouter G. Staal; Frits A. Beemer; Jacob Vorstman; J. Peter H. Burbach; Hans Kristian Ploos van Amstel; Ron Hochstenbach; Eva H. Brilstra; Martin Poot

Recent array-based studies have detected a wealth of copy number variations (CNVs) in patients with autism spectrum disorders (ASD). Since CNVs also occur in healthy individuals, their contributions to the patient’s phenotype remain largely unclear. In a cohort of children with symptoms of ASD, diagnosis of the index patient using ADOS-G and ADI-R was performed, and the Social Responsiveness Scale (SRS) was administered to the index patients, both parents, and all available siblings. CNVs were identified using SNP arrays and confirmed by FISH or array CGH. To evaluate the clinical significance of CNVs, we analyzed three families with multiple affected children (multiplex) and six families with a single affected child (simplex) in which at least one child carried a CNV with a brain-transcribed gene. CNVs containing genes that participate in pathways previously implicated in ASD, such as the phosphoinositol signaling pathway (PIK3CA, GIRDIN), contactin-based networks of cell communication (CNTN6), and microcephalin (MCPH1) were found not to co-segregate with ASD phenotypes. In one family, a loss of CNTN5 co-segregated with disease. This indicates that most CNVs may by themselves not be sufficient to cause ASD, but still may contribute to the phenotype by additive or epistatic interactions with inherited (transmitted) mutations or non-genetic factors. Our study extends the scope of genome-wide CNV profiling beyond de novo CNVs in sporadic patients and may aid in uncovering missing heritability in genome-wide screening studies of complex psychiatric disorders.


European Journal of Human Genetics | 2008

Mutation screening of the Ectodysplasin-A receptor gene EDAR in hypohidrotic ectodermal dysplasia

Annemarie H. van der Hout; Gretel G. Oudesluijs; Andrea Venema; Joke B. G. M. Verheij; Bart Mol; Patrick Rump; Han G. Brunner; Yvonne J. Vos; Anthonie J. van Essen

Hypohidrotic ectodermal dysplasia (HED) can be caused by mutations in the X-linked ectodysplasin A (ED1) gene or the autosomal ectodysplasin A-receptor (EDAR) and EDAR-associated death domain (EDARADD) genes. X-linked and autosomal forms are sometimes clinically indistinguishable. For genetic counseling in families, it is therefore important to know the gene involved. In 24 of 42 unrelated patients with features of HED, we found a mutation in ED1. ED1-negative patients were screened for mutations in EDAR and EDARADD. We found mutations in EDAR in 5 of these 18 patients. One mutation, p.Glu354X, is novel. In EDARADD, a novel variant p.Ser93Phe, probably a neutral polymorphism, was also found. Clinically, there was a difference between autosomal dominant and autosomal recessive HED patients. The phenotype in patients with mutations in both EDAR alleles was comparable to males with X-linked HED. Patients with autosomal dominant HED had features comparable to those of female carriers of X-linked HED. The teeth of these patients were quite severely affected. Hypohidrosis and sparse hair were also evident, but less severe. This study confirms Chassaing et als earlier finding that mutations in EDAR account for approximately 25% of non-ED1-related HED. Mutations leading to a premature stop codon have a recessive effect except when the stop codon is in the last exon. Heterozygous missense mutations in the functional domains of the gene may have a dominant-negative effect with much variation in expression. Patients with homozygous or compound heterozygous mutations in the EDAR gene have a more severe phenotype than those with a heterozygous missense, nonsense or frame-shift mutation.


Annals of Neurology | 2014

Mutations in RARS Cause Hypomyelination

Nicole I. Wolf; Gajja S. Salomons; Richard J. Rodenburg; Petra J. W. Pouwels; Jolanda H. Schieving; Terry G. J. Derks; Johanna Fock; Patrick Rump; Daphne M. van Beek; Marjo S. van der Knaap; Quinten Waisfisz

Hypomyelinating disorders of the central nervous system are still a diagnostic challenge, as many patients remain without genetic diagnosis. Using magnetic resonance imaging (MRI) pattern recognition and whole exome sequencing, we could ascertain compound heterozygous mutations in RARS in 4 patients with hypomyelination. Clinical features included severe spasticity and nystagmus. RARS encodes the cytoplasmic arginyl‐tRNA synthetase, an enzyme essential for RNA translation. This protein is among the subunits of the multisynthetase complex, which emerges as a key player in myelination. Ann Neurol 2014;76:134–139


Prostaglandins Leukotrienes and Essential Fatty Acids | 2014

Association between polyunsaturated fatty acid concentrations in maternal plasma phospholipids during pregnancy and offspring adiposity at age 7: The MEFAB cohort.

Paul S. de Vries; Marij Gielen; Dimitris Rizopoulos; Patrick Rump; Roger W. L. Godschalk; Gerard Hornstra; Maurice P. Zeegers

Prenatal polyunsaturated fatty acid (PUFA) concentrations may be involved in the prenatal programming of adiposity. In this study we therefore explored the association between maternal PUFA concentrations, measured up to four times during pregnancy, and offspring adiposity at age 7 in 234 mother-child pairs of the Maastricht Essential Fatty Acid Birth cohort. Only dihomo-gamma-linolenic acid (DGLA, an n-6 fatty acid) concentration was associated with adiposity: per standard deviation increase in relative DGLA concentration, BMI increased by 0.44kg/m(2) (CI95: 0.16, 0.72), sum of skinfolds increased by 3.41mm (CI95: 1.88, 4.95), waist circumference increased by 1.09cm (CI95: 0.40, 1.78), and plasma leptin concentration increased by 0.66µg/l (CI95: 0.20, 1.11). In conclusion, maternal DGLA throughout gestation was associated with increased BMI and some additional measures of adiposity at age 7. This suggests that maternal DGLA might play a role in or reflect the prenatal programming of adiposity.


Nature Genetics | 2017

Mutations in the histone methyltransferase gene KMT2B cause complex early-onset dystonia

Esther Meyer; Keren J. Carss; Julia Rankin; John M E Nichols; Detelina Grozeva; Agnel Praveen Joseph; Niccolo E. Mencacci; Apostolos Papandreou; Joanne Ng; Serena Barral; Adeline Ngoh; M.A.A.P. Willemsen; David Arkadir; Angela Barnicoat; Hagai Bergman; Sanjay Bhate; Amber Boys; Niklas Darin; Nicola Foulds; Nicholas Gutowski; Alison Hills; Henry Houlden; Jane A. Hurst; Zvi Israel; Margaret Kaminska; Patricia Limousin; Daniel E. Lumsden; Shane McKee; Shibalik Misra; Ss Mohammed

Histone lysine methylation, mediated by mixed-lineage leukemia (MLL) proteins, is now known to be critical in the regulation of gene expression, genomic stability, cell cycle and nuclear architecture. Despite MLL proteins being postulated as essential for normal development, little is known about the specific functions of the different MLL lysine methyltransferases. Here we report heterozygous variants in the gene KMT2B (also known as MLL4) in 27 unrelated individuals with a complex progressive childhood-onset dystonia, often associated with a typical facial appearance and characteristic brain magnetic resonance imaging findings. Over time, the majority of affected individuals developed prominent cervical, cranial and laryngeal dystonia. Marked clinical benefit, including the restoration of independent ambulation in some cases, was observed following deep brain stimulation (DBS). These findings highlight a clinically recognizable and potentially treatable form of genetic dystonia, demonstrating the crucial role of KMT2B in the physiological control of voluntary movement.

Collaboration


Dive into the Patrick Rump's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Oebele F. Brouwer

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Yvonne J. Vos

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Trijnie Dijkhuizen

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Anthonie J. van Essen

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Birgit Sikkema-Raddatz

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roel Hordijk

University of Groningen

View shared research outputs
Researchain Logo
Decentralizing Knowledge