Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrick S. Kirchmann is active.

Publication


Featured researches published by Patrick S. Kirchmann.


Science | 2008

Transient Electronic Structure and Melting of a Charge Density Wave in TbTe3

F. Schmitt; Patrick S. Kirchmann; Uwe Bovensiepen; R. G. Moore; L. Rettig; Marcel Krenz; J. H. Chu; N. Ru; Luca Perfetti; D. H. Lu; Martin Wolf; I. R. Fisher; Zhi-Xun Shen

Obtaining insight into microscopic cooperative effects is a fascinating topic in condensed matter research because, through self-coordination and collectivity, they can lead to instabilities with macroscopic impacts like phase transitions. We used femtosecond time- and angle-resolved photoelectron spectroscopy (trARPES) to optically pump and probe TbTe3, an excellent model system with which to study these effects. We drove a transient charge density wave melting, excited collective vibrations in TbTe3, and observed them through their time-, frequency-, and momentum-dependent influence on the electronic structure. We were able to identify the role of the observed collective vibration in the transition and to document the transition in real time. The information that we demonstrate as being accessible with trARPES will greatly enhance the understanding of all materials exhibiting collective phenomena.


Physical Review Letters | 2012

Ultrafast Optical Excitation of a Persistent Surface-State Population in the Topological Insulator Bi2Se3

Jonathan Sobota; Shuolong Yang; James G. Analytis; Yulin Chen; I. R. Fisher; Patrick S. Kirchmann; Zhi-Xun Shen

Using femtosecond time- and angle-resolved photoemission spectroscopy, we investigated the nonequilibrium dynamics of the topological insulator Bi2Se3. We studied p-type Bi2Se3, in which the metallic Dirac surface state and bulk conduction bands are unoccupied. Optical excitation leads to a metastable population at the bulk conduction band edge, which feeds a nonequilibrium population of the surface state persisting for >10 ps. This unusually long-lived population of a metallic Dirac surface state with spin texture may present a channel in which to drive transient spin-polarized currents.


Physical Review Letters | 2012

Femtosecond Dynamics of the Collinear-to-Spiral Antiferromagnetic Phase Transition in CuO

S. L. Johnson; R. A. De Souza; U. Staub; P. Beaud; E. Möhr-Vorobeva; G. Ingold; A. Caviezel; V. Scagnoli; W. F. Schlotter; J. J. Turner; O. Krupin; W. S. Lee; Yi-De Chuang; L. Patthey; R. G. Moore; D. H. Lu; M. Yi; Patrick S. Kirchmann; M. Trigo; Peter Denes; Dionisio Doering; Z. Hussain; Zhi-Xun Shen; D. Prabhakaran; A. T. Boothroyd

We report on the ultrafast dynamics of magnetic order in a single crystal of CuO at a temperature of 207 K in response to strong optical excitation using femtosecond resonant x-ray diffraction. In the experiment, a femtosecond laser pulse induces a sudden, nonequilibrium increase in magnetic disorder. After a short delay ranging from 400 fs to 2 ps, we observe changes in the relative intensity of the magnetic ordering diffraction peaks that indicate a shift from a collinear commensurate phase to a spiral incommensurate phase. These results indicate that the ultimate speed for this antiferromagnetic reorientation transition in CuO is limited by the long-wavelength magnetic excitation connecting the two phases.


Nature Materials | 2013

Speed limit of the insulator–metal transition in magnetite

S. de Jong; Roopali Kukreja; Christoph Trabant; N. Pontius; C. F. Chang; T. Kachel; M. Beye; F. Sorgenfrei; C. H. Back; Björn Bräuer; W. F. Schlotter; J. J. Turner; O. Krupin; M. Doehler; Diling Zhu; M. A. Hossain; Andreas Scherz; Daniele Fausti; Fabio Novelli; Martina Esposito; Wei-Sheng Lee; Yi-De Chuang; D. H. Lu; R. G. Moore; M. Yi; M. Trigo; Patrick S. Kirchmann; L. Pathey; M. S. Golden; M. Buchholz

As the oldest known magnetic material, magnetite (Fe3O4) has fascinated mankind for millennia. As the first oxide in which a relationship between electrical conductivity and fluctuating/localized electronic order was shown, magnetite represents a model system for understanding correlated oxides in general. Nevertheless, the exact mechanism of the insulator-metal, or Verwey, transition has long remained inaccessible. Recently, three-Fe-site lattice distortions called trimerons were identified as the characteristic building blocks of the low-temperature insulating electronically ordered phase. Here we investigate the Verwey transition with pump-probe X-ray diffraction and optical reflectivity techniques, and show how trimerons become mobile across the insulator-metal transition. We find this to be a two-step process. After an initial 300 fs destruction of individual trimerons, phase separation occurs on a 1.5±0.2 ps timescale to yield residual insulating and metallic regions. This work establishes the speed limit for switching in future oxide electronics.


Physical Review Letters | 2013

Direct optical coupling to an unoccupied dirac surface state in the topological insulator Bi2Se3.

Jonathan Sobota; Shuolong Yang; A. F. Kemper; Jooseop Lee; F. Schmitt; Wei Li; R. G. Moore; James G. Analytis; I. R. Fisher; Patrick S. Kirchmann; T. P. Devereaux; Zhi-Xun Shen

We characterize the occupied and unoccupied electronic structure of the topological insulator Bi2Se3 by one-photon and two-photon angle-resolved photoemission spectroscopy and slab band structure calculations. We reveal a second, unoccupied Dirac surface state with similar electronic structure and physical origin to the well-known topological surface state. This state is energetically located 1.5 eV above the conduction band, which permits it to be directly excited by the output of a Ti:sapphire laser. This discovery demonstrates the feasibility of direct ultrafast optical coupling to a topologically protected, spin-textured surface state.


Nature Communications | 2012

Phase fluctuations and the absence of topological defects in a photo-excited charge-ordered nickelate

W. S. Lee; Yi-De Chuang; R. G. Moore; Yiwen Zhu; L. Patthey; M. Trigo; D. H. Lu; Patrick S. Kirchmann; O. Krupin; M. Yi; M. C. Langner; Nils Huse; Y. Chen; Shuyun Zhou; G. Coslovich; Bernhard Huber; David A. Reis; Robert A. Kaindl; Robert W. Schoenlein; D. Doering; Peter Denes; W. F. Schlotter; J. J. Turner; S. L. Johnson; Michael Först; T. Sasagawa; Y. F. Kung; A. P. Sorini; A. F. Kemper; Brian Moritz

The dynamics of an order parameters amplitude and phase determines the collective behaviour of novel states emerging in complex materials. Time- and momentum-resolved pump-probe spectroscopy, by virtue of measuring material properties at atomic and electronic time scales out of equilibrium, can decouple entangled degrees of freedom by visualizing their corresponding dynamics in the time domain. Here we combine time-resolved femotosecond optical and resonant X-ray diffraction measurements on charge ordered La(1.75)Sr(0.25)NiO(4) to reveal unforeseen photoinduced phase fluctuations of the charge order parameter. Such fluctuations preserve long-range order without creating topological defects, distinct from thermal phase fluctuations near the critical temperature in equilibrium. Importantly, relaxation of the phase fluctuations is found to be an order of magnitude slower than that of the order parameters amplitude fluctuations, and thus limits charge order recovery. This new aspect of phase fluctuations provides a more holistic view of the phases importance in ordering phenomena of quantum matter.


Physical Review Letters | 2014

Distinguishing Bulk and Surface Electron-Phonon Coupling in the Topological Insulator Bi 2 Se 3 Using Time-Resolved Photoemission Spectroscopy

Jonathan A. Sobota; Shuolong Yang; Dominik Leuenberger; A. F. Kemper; James G. Analytis; I. R. Fisher; Patrick S. Kirchmann; T. P. Devereaux; Zhi-Xun Shen

We report time- and angle-resolved photoemission spectroscopy measurements on the topological insulator Bi(2)Se(3). We observe oscillatory modulations of the electronic structure of both the bulk and surface states at a frequency of 2.23 THz due to coherent excitation of an A(1g) phonon mode. A distinct, additional frequency of 2.05 THz is observed in the surface state only. The lower phonon frequency at the surface is attributed to the termination of the crystal and thus reduction of interlayer van der Waals forces, which serve as restorative forces for out-of-plane lattice distortions. Density functional theory calculations quantitatively reproduce the magnitude of the surface phonon softening. These results represent the first band-resolved evidence of the A(1g) phonon mode coupling to the surface state in a topological insulator.


New Journal of Physics | 2005

Ultrafast electron dynamics studied with time-resolved two-photon photoemission: intra- and interband scattering in C6F6/Cu(1 1 1)

Patrick S. Kirchmann; Panagiotis A. Loukakos; Uwe Bovensiepen; Martin Wolf

The advances in femtosecond laser techniques facilitate the investigation of ultrafast electron dynamics at surfaces directly in the time-domain. We employ time-resolved two-photon-photoemission (2PPE) spectroscopy to study the electron dynamics of the unoccupied electronic states in hexafluorobenzene (C6F6) on Cu(1 1 1) serving as a model system for charge transfer across organic–metal interfaces. Our coverage-dependent study reveals a lifetime of the lowest unoccupied molecular resonance of 7 fs for a single monolayer (ML) which increases to 37 fs above 3 ML coverage. We find that the population build-up of the excited state is delayed by a characteristic time of about 10 fs with respect to the exciting laser pulse. By angle-resolved 2PPE spectroscopy, the mechanism of the delayed population rise is identified as intraband relaxation in the adsorbate band structure. The actual electron-transfer to the metal substrate occurs through interband scattering between the molecular resonance and substrate states on comparable timescales. Therefore the present study demonstrates that relaxation of hot electrons at molecule–metal interfaces include—even in the presence of strong electronic molecule–substrate interaction—also decay channels within the adlayer.


New Journal of Physics | 2011

Ultrafast electron dynamics in the charge density wave material TbTe3

F Schmitt; Patrick S. Kirchmann; Uwe Bovensiepen; R. G. Moore; J.-H. Chu; D. H. Lu; L. Rettig; Martin Wolf; I. R. Fisher; Z.-X. Shen

Gaining insights into the mechanisms of how order and broken symmetry emerges from many-particle interactions is a major challenge in solid state physics. Most experimental techniques—such as angle-resolved photoemission spectroscopy (ARPES)—probe the single-particle excitation spectrum and extract information about the ordering mechanism and collective effects, often indirectly through theory. Time-resolved ARPES (tr-ARPES) makes collective dynamics of a system after optical excitation directly visible through their influence on the quasi-particle band structure. Using this technique, we present a systematic study of TbTe3, a metal that exhibits a charge-density wave (CDW) transition. We discuss time-resolved data taken at different positions in the Brillouin zone (BZ) and at different temperatures.


Science | 2017

Femtosecond electron-phonon lock-in by photoemission and x-ray free-electron laser

S. Gerber; S.-L. Yang; Diling Zhu; H. Soifer; J. A. Sobota; S. Rebec; J. J. Lee; Tao Jia; Brian Moritz; Chunjing Jia; A. Gauthier; Y. Li; Dominik Leuenberger; Youyi Zhang; L. Chaix; Wei Li; H. Jang; J.-S. Lee; M. Yi; Georgi L. Dakovski; Sanghoon Song; James M. Glownia; S. Nelson; K. W. Kim; Y.-D. Chuang; Z. Hussain; R. G. Moore; T. P. Devereaux; W. S. Lee; Patrick S. Kirchmann

A deeper look into iron selenide In the past 10 years, iron-based superconductors have created more puzzles than they have helped resolve. Some of the most fundamental outstanding questions are how strong the interactions are and what the electron pairing mechanism is. Now two groups have made contributions toward resolving these questions in the intriguing compound iron selenide (FeSe) (see the Perspective by Lee). Gerber et al. used photoemission spectroscopy coupled with x-ray diffraction to find that FeSe has a very sizable electron-phonon interaction. Quasiparticle interference imaging helped Sprau et al. determine the shape of the superconducting gap and find that the electron pairing in FeSe is orbital-selective. Science, this issue p. 71, p. 75; see also p. 32 Photoemission spectroscopy coupled with x-ray diffraction reveals a sizable electron-phonon interaction in iron selenide. The interactions that lead to the emergence of superconductivity in iron-based materials remain a subject of debate. It has been suggested that electron-electron correlations enhance electron-phonon coupling in iron selenide (FeSe) and related pnictides, but direct experimental verification has been lacking. Here we show that the electron-phonon coupling strength in FeSe can be quantified by combining two time-domain experiments into a “coherent lock-in” measurement in the terahertz regime. X-ray diffraction tracks the light-induced femtosecond coherent lattice motion at a single phonon frequency, and photoemission monitors the subsequent coherent changes in the electronic band structure. Comparison with theory reveals a strong enhancement of the coupling strength in FeSe owing to correlation effects. Given that the electron-phonon coupling affects superconductivity exponentially, this enhancement highlights the importance of the cooperative interplay between electron-electron and electron-phonon interactions.

Collaboration


Dive into the Patrick S. Kirchmann's collaboration.

Top Co-Authors

Avatar

Zhi-Xun Shen

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. H. Lu

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. G. Moore

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Uwe Bovensiepen

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Yi

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge