Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrick Seiler is active.

Publication


Featured researches published by Patrick Seiler.


Virology | 2003

Preparation of a standardized, efficacious agricultural H5N3 vaccine by reverse genetics.

Ming Liu; John Wood; Trevor M. Ellis; Scott Krauss; Patrick Seiler; Christie Johnson; Erich Hoffmann; Jennifer Humberd; Diane J. Hulse; Yun Zhang; Robert G. Webster; Daniel R. Perez

Options for the control of emerging and reemerging H5N1 influenza viruses include improvements in biosecurity and the use of inactivated vaccines. Commercially available H5N2 influenza vaccine prevents disease signs and reduces virus load but does not completely prevent virus shedding after challenge with H5N1 virus. By using reverse genetics, we prepared an H5N3 vaccine whose hemagglutinin is 99.6% homologous to that of A/CK/HK/86.3/02 (H5N1). We used the internal genes of A/PR/8/34 and the H5 of A/Goose/HK/437.4/99 (H5N1) after deletion of basic amino acids from its connecting peptide region. The resulting virus was not lethal to chicken embryos and grew to high HA titers in eggs, allowing preparation of HA protein-standardized vaccine in unconcentrated allantoic fluid. The N3 neuraminidase, derived from A/Duck/Germany/1215/73 (H2N3), permitted discrimination between vaccinated and naturally infected birds. The virus construct failed to replicate in quail and chickens. Similar to parental A/PR/8/34 (H1N1), it replicated in mice and ferrets and spread to the brains of mice; therefore, it should not be used as a live-attenuated vaccine. The H5N3 vaccine, at doses of 1.2 microg HA, induced HI antibodies in chickens and prevented death, signs of disease, and markedly reduced virus shedding after challenge with A/CK/HK/86.3/02 (H5N1) but did not provide sterilizing immunity. Thus, reverse genetics allows the inexpensive preparation of standardized, efficacious H5N3 poultry vaccines that may also reduce the reemergence of H5N1 genotypes.


PLOS Pathogens | 2010

Oseltamivir–Resistant Pandemic H1N1/2009 Influenza Virus Possesses Lower Transmissibility and Fitness in Ferrets

Susu Duan; David A. Boltz; Patrick Seiler; Jiang Li; Karoline Bragstad; Lars Peter Nielsen; Richard J. Webby; Robert G. Webster; Elena A. Govorkova

The neuraminidase (NA) inhibitor oseltamivir offers an important immediate option for the control of influenza, and its clinical use has increased substantially during the recent H1N1 pandemic. In view of the high prevalence of oseltamivir-resistant seasonal H1N1 influenza viruses in 2007–2008, there is an urgent need to characterize the transmissibility and fitness of oseltamivir-resistant H1N1/2009 viruses, although resistant variants have been isolated at a low rate. Here we studied the transmissibility of a closely matched pair of pandemic H1N1/2009 clinical isolates, one oseltamivir-sensitive and one resistant, in the ferret model. The resistant H275Y mutant was derived from a patient on oseltamivir prophylaxis and was the first oseltamivir-resistant isolate of the pandemic virus. Full genome sequencing revealed that the pair of viruses differed only at NA amino acid position 275. We found that the oseltamivir-resistant H1N1/2009 virus was not transmitted efficiently in ferrets via respiratory droplets (0/2), while it retained efficient transmission via direct contact (2/2). The sensitive H1N1/2009 virus was efficiently transmitted via both routes (2/2 and 1/2, respectively). The wild-type H1N1/2009 and the resistant mutant appeared to cause a similar disease course in ferrets without apparent attenuation of clinical signs. We compared viral fitness within the host by co-infecting a ferret with oseltamivir-sensitive and -resistant H1N1/2009 viruses and found that the resistant virus showed less growth capability (fitness). The NA of the resistant virus showed reduced substrate-binding affinity and catalytic activity in vitro and delayed initial growth in MDCK and MDCK-SIAT1 cells. These findings may in part explain its less efficient transmission. The fact that the oseltamivir-resistant H1N1/2009 virus retained efficient transmission through direct contact underlines the necessity of continuous monitoring of drug resistance and characterization of possible evolving viral proteins during the pandemic.


Journal of Virology | 2010

The pH of Activation of the Hemagglutinin Protein Regulates H5N1 Influenza Virus Pathogenicity and Transmissibility in Ducks

Mark L. Reed; Olga A. Bridges; Patrick Seiler; Jeong-Ki Kim; Hui-Ling Yen; Rachelle Salomon; Elena A. Govorkova; Robert G. Webster; Charles J. Russell

ABSTRACT While the molecular mechanism of membrane fusion by the influenza virus hemagglutinin (HA) protein has been studied extensively in vitro, the role of acid-dependent HA protein activation in virus replication, pathogenesis, and transmission in vivo has not been characterized. To investigate the biological significance of the pH of activation of the HA protein, we compared the properties of four recombinant viruses with altered HA protein acid stability to those of wild-type influenza virus A/chicken/Vietnam/C58/04 (H5N1) in vitro and in mallards. Membrane fusion by wild-type virus was activated at pH 5.9. Wild-type virus had a calculated environmental persistence of 62 days and caused extensive morbidity, mortality, shedding, and transmission in mallards. An N114K mutation that increased the pH of HA activation by 0.5 unit resulted in decreased replication, genetic stability, and environmental stability. Changes of +0.4 and −0.5 unit in the pH of activation by Y23H and K58I mutations, respectively, reduced weight loss, mortality, shedding, and transmission in mallards. An H24Q mutation that decreased the pH of activation by 0.3 unit resulted in weight loss, mortality, clinical symptoms, and shedding similar to those of the wild type. However, the HA-H241Q virus was shed more extensively into drinking water and persisted longer in the environment. The pH of activation of the H5 HA protein plays a key role in the propagation of H5N1 influenza viruses in ducks and may be a novel molecular factor in the ecology of influenza viruses. The data also demonstrate that H5N1 neuraminidase activity increases the pH of activation of the HA protein in vitro.


Emerging Infectious Diseases | 2007

Role of Terrestrial Wild Birds in Ecology of Influenza A Virus (H5N1)

Adrianus C. M. Boon; Matthew R. Sandbulte; Patrick Seiler; Richard J. Webby; Thaweesak Songserm; Yi Guan; Robert G. Webster

Recent viruses are pathogenic for some small terrestrial bird species.


Antiviral Research | 2013

Antiviral resistance among highly pathogenic influenza A (H5N1) viruses isolated worldwide in 2002–2012 shows need for continued monitoring

Elena A. Govorkova; Tatiana Baranovich; Patrick Seiler; Jianling Armstrong; Andrew J. Burnham; Yi Guan; Malik Peiris; Richard J. Webby; Robert G. Webster

Highly pathogenic (HP) H5N1 influenza viruses are evolving pathogens with the potential to cause sustained human-to-human transmission and pandemic virus spread. Specific antiviral drugs can play an important role in the early stages of a pandemic, but the emergence of drug-resistant variants can limit control options. The available data on the susceptibility of HP H5N1 influenza viruses to neuraminidase (NA) inhibitors and adamantanes is scarce, and there is no extensive analysis. Here, we systematically examined the prevalence of NA inhibitor and adamantane resistance among HP H5N1 influenza viruses that circulated worldwide during 2002-2012. The phenotypic fluorescence-based assay showed that both human and avian HP H5N1 viruses are susceptible to NA inhibitors oseltamivir and zanamivir with little variability over time and ∼5.5-fold less susceptibility to oseltamivir of viruses of hemagglutinin (HA) clade 2 than of clade 1. Analysis of available sequence data revealed a low incidence of NA inhibitor-resistant variants. The established markers of NA inhibitor resistance (E119A, H274Y, and N294S, N2 numbering) were found in 2.4% of human and 0.8% of avian isolates, and the markers of reduced susceptibility (I117V, K150N, I222V/T/K, and S246N) were found in 0.8% of human and 2.9% of avian isolates. The frequency of amantadine-resistant variants was higher among human (62.2%) than avian (31.6%) viruses with disproportionate distribution among different HA clades. As in human isolates, avian H5N1 viruses carry double L26I and S31N M2 mutations more often than a single S31N mutation. Overall, both human and avian HP H5N1 influenza viruses are susceptible to NA inhibitors; some proportion is still susceptible to amantadine in contrast to ∼100% amantadine resistance among currently circulating seasonal human H1N1 and H3N2 viruses. Continued antiviral susceptibility monitoring of H5N1 viruses is needed to maintain therapeutic approaches for control of disease.


Journal of General Virology | 2010

Emergence of H5N1 avian influenza viruses with reduced sensitivity to neuraminidase inhibitors and novel reassortants in Lao People's Democratic Republic

David A. Boltz; Bounlom Douangngeun; Phouvong Phommachanh; Settha Sinthasak; Ricarda Mondry; Caroline Obert; Patrick Seiler; Rachael Keating; Yasuo Suzuki; Hiroaki Hiramatsu; Elena A. Govorkova; Robert G. Webster

Pandemic influenza viruses can emerge through continuous evolution and the acquisition of specific mutations or through reassortment. This study assessed the pandemic potential of H5N1 viruses isolated from poultry outbreaks occurring from July 2006 to September 2008 in the Lao Peoples Democratic Republic (PDR). We analyzed 29 viruses isolated from chickens and ducks and two from fatal human cases in 2007. Prior to 2008, all H5N1 isolates in Lao PDR were from clade 2.3.4; however, clade 2.3.2 was introduced in September 2008. Of greatest concern was the circulation of three isolates that showed reduced sensitivity to the neuraminidase (NA) inhibitor oseltamivir in an enzyme inhibition assay, each with different NA mutations - V116A, I222L and K150N, and a previously unreported S246N mutation. In addition, six isolates had an S31N mutation in the M2 protein, which conferred resistance to amantadine not previously reported in clade 2.3.4 viruses. Two H5N1 reassortants were isolated whose polymerase genes, PB1 and PB2, were homologous to those of Eurasian viruses giving rise to a novel H5N1 genotype, genotype P. All H5N1 viruses retained avian-like receptor specificity, but four had altered affinities for alpha2,3-linked sialic acid. This study shows that, in a genetically similar population of H5N1 viruses in Lao PDR, mutants emerged with natural resistance to antivirals and altered affinities for alpha2,3-linked sialic acids, together with reassortants with polymerase genes homologous to Eurasian viruses. These changes may contribute to the emergence of a pandemic influenza strain and are critical in devising surveillance strategies.


Journal of Virology | 2008

Pathogenicity and Vaccine Efficacy of Different Clades of Asian H5N1 Avian Influenza A Viruses in Domestic Ducks

Jeong-Ki Kim; Patrick Seiler; Heather L. Forrest; Alexey M. Khalenkov; John Franks; Mahesh Kumar; William B. Karesh; Martin Gilbert; Ruuragchaa Sodnomdarjaa; Bounlom Douangngeun; Elena A. Govorkova; Robert G. Webster

ABSTRACT Waterfowl represent the natural reservoir of all subtypes of influenza A viruses, including H5N1. Ducks are especially considered major contributors to the spread of H5N1 influenza A viruses because they exhibit diversity in morbidity and mortality. Therefore, as a preventive strategy against endemic as well as pandemic influenza, it is important to reduce the spread of H5N1 influenza A viruses in duck populations. Here, we describe the pathogenicity of dominant clades (clades 1 and 2) of H5N1 influenza A viruses circulating in birds in Asia. Four representatives of dominant clades of the viruses cause symptomatic infection but lead to different profiles of lethality in domestic ducks. We also demonstrate the efficacy, cross-protectiveness, and immunogenicity of three different inactivated oil emulsion whole-virus H5 influenza vaccines (derived by implementing reverse genetics) to the viruses in domestic ducks. A single dose of the vaccines containing 1 μg of hemagglutinin protein provides complete protection against a lethal A/Duck/Laos/25/06 (H5N1) influenza virus challenge, with no evidence of morbidity, mortality, or shedding of the challenge virus. Moreover, two of the three vaccines achieved complete cross-clade or cross-subclade protection against the heterologous avian influenza virus challenge. Interestingly, the vaccines induce low or undetectable titers of hemagglutination inhibition (HI), cross-HI, and/or virus neutralization antibodies. The mechanism of complete protection in the absence of detectable antibody responses remains an open question.


PLOS ONE | 2011

Live Bird Markets of Bangladesh: H9N2 Viruses and the Near Absence of Highly Pathogenic H5N1 Influenza

Nicholas J. Negovetich; Mohammed Mostafa Feeroz; Lisa Jones-Engel; David Walker; S. M. Rabiul Alam; Kamrul Hasan; Patrick Seiler; Angie Ferguson; Kim Friedman; Subrata Barman; John Franks; Jasmine Turner; Scott Krauss; Richard J. Webby; Robert G. Webster

Avian influenza surveillance in Bangladesh has been passive, relying on poultry farmers to report suspected outbreaks of highly pathogenic H5N1 influenza. Here, the results of an active surveillance effort focusing on the live-bird markets are presented. Prevalence of influenza infection in the birds of the live bird markets is 23.0%, which is similar to that in poultry markets in other countries. Nearly all of the isolates (94%) were of the non-pathogenic H9N2 subtype, but viruses of the H1N2, H1N3, H3N6, H4N2, H5N1, and H10N7 subtypes were also observed. The highly pathogenic H5N1-subtype virus was observed at extremely low prevalence in the surveillance samples (0.08%), and we suggest that the current risk of infection for humans in the retail poultry markets in Bangladesh is negligible. However, the high prevalence of the H9 subtype and its potential for interaction with the highly pathogenic H5N1-subtype, i.e., reassortment and attenuation of host morbidity, highlight the importance of active surveillance of the poultry markets.


Emerging Infectious Diseases | 2013

Antigenic and Molecular Characterization of Avian Influenza A(H9N2) Viruses, Bangladesh

Karthik Shanmuganatham; Mohammed Mostafa Feeroz; Lisa Jones-Engel; Gavin J. D. Smith; Mathieu Fourment; David Walker; Laura McClenaghan; S. M. Rabiul Alam; M. Kamrul Hasan; Patrick Seiler; John Franks; Angie Danner; Subrata Barman; Pamela McKenzie; Scott Krauss; Richard J. Webby; Robert G. Webster

Human infection with avian influenza A(H9N2) virus was identified in Bangladesh in 2011. Surveillance for influenza viruses in apparently healthy poultry in live-bird markets in Bangladesh during 2008–2011 showed that subtype H9N2 viruses are isolated year-round, whereas highly pathogenic subtype H5N1 viruses are co-isolated with subtype H9N2 primarily during the winter months. Phylogenetic analysis of the subtype H9N2 viruses showed that they are reassortants possessing 3 gene segments related to subtype H7N3; the remaining gene segments were from the subtype H9N2 G1 clade. We detected no reassortment with subtype H5N1 viruses. Serologic analyses of subtype H9N2 viruses from chickens revealed antigenic conservation, whereas analyses of viruses from quail showed antigenic drift. Molecular analysis showed that multiple mammalian-specific mutations have become fixed in the subtype H9N2 viruses, including changes in the hemagglutinin, matrix, and polymerase proteins. Our results indicate that these viruses could mutate to be transmissible from birds to mammals, including humans.


Virology | 2009

Zoonotic potential of highly pathogenic avian H7N3 influenza viruses from Pakistan

Uzma B. Aamir; K. Naeem; Zaheer Ahmed; Caroline Obert; John Franks; Scott Krauss; Patrick Seiler; Robert G. Webster

H5 and H7 avian influenza viruses can become highly pathogenic in chickens after interspecies transmission. These viruses have transmitted directly to humans from birds in Eurasia and Africa (H5N1), the Netherlands (H7N7), and Canada (H7N3). Here we report antigenic, sequence, and phylogenetic analyses of H7N3 viruses isolated from chickens in Pakistan from 1995 to 2002. We compared the pathogenic and zoonotic potential of the Pakistani viruses in avian and mammalian hosts. In chickens, all of the isolates showed high pathogenicity with poor transmissibility to contact birds. Viral shedding from the trachea and cloaca was equivalent, but cloacal shedding occurred longer; dissemination of virus into the tissues was widespread. In contrast, the viruses replicated poorly in 6-week-old mallard ducks. In mammalian hosts, of the two Pakistani H7N3/02 viruses that caused weight loss, one also caused 40% mortality in mice without prior adaptation, and preliminary experiments in ferrets showed significant virus multiplication in the lungs, intestine, and conjunctiva. We conclude that the H7N3/02 isolates from Pakistan show limited antigenic drift and have evolved slowly during their 8-year circulation in chickens; however, these viruses have the potential to infect mammals.

Collaboration


Dive into the Patrick Seiler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard J. Webby

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Scott Krauss

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

John Franks

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Elena A. Govorkova

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Jasmine Turner

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pamela McKenzie

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge