Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrick Sulem is active.

Publication


Featured researches published by Patrick Sulem.


Nature | 2012

Rate of de novo mutations and the importance of father/'s age to disease risk

Augustine Kong; Michael L. Frigge; Gisli Masson; Søren Besenbacher; Patrick Sulem; Gisli Magnusson; Sigurjon A. Gudjonsson; Asgeir Sigurdsson; Aslaug Jonasdottir; Adalbjorg Jonasdottir; Wendy S. W. Wong; Gunnar Sigurdsson; G. Bragi Walters; Stacy Steinberg; Hannes Helgason; Gudmar Thorleifsson; Daniel F. Gudbjartsson; Agnar Helgason; Olafur T. Magnusson; Unnur Thorsteinsdottir; Kari Stefansson

Mutations generate sequence diversity and provide a substrate for selection. The rate of de novo mutations is therefore of major importance to evolution. We conducted a study of genomewide mutation rate by sequencing the entire genomes of 78 Icelandic parent-offspring trios at high coverage. Here we show that in our samples, with an average father’s age of 29.7, the average de novo mutation rate is 1.20×10−8 per nucleotide per generation. Most strikingly, the diversity in mutation rate of single-nucleotide polymorphism (SNP) is dominated by the age of the father at conception of the child. The effect is an increase of about 2 mutations per year. After accounting for random Poisson variation, father’s age is estimated to explain nearly all of the remaining variation in the de novo mutation counts. These observations shed light on the importance of the father’s age on the risk of diseases such as schizophrenia and autism.


Nature | 2012

A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline

Thorlakur Jonsson; Jasvinder Atwal; Stacy Steinberg; Jon Snaedal; Palmi V. Jonsson; Sigurbjorn Bjornsson; Hreinn Stefansson; Patrick Sulem; Daniel F. Gudbjartsson; Janice Maloney; Kwame Hoyte; Amy Gustafson; Yichin Liu; Yanmei Lu; Tushar Bhangale; Robert R. Graham; Johanna Huttenlocher; Gyda Bjornsdottir; Ole A. Andreassen; Erik G. Jönsson; Aarno Palotie; Timothy W. Behrens; Olafur T. Magnusson; Augustine Kong; Unnur Thorsteinsdottir; Ryan J. Watts; Kari Stefansson

The prevalence of dementia in the Western world in people over the age of 60 has been estimated to be greater than 5%, about two-thirds of which are due to Alzheimer’s disease. The age-specific prevalence of Alzheimer’s disease nearly doubles every 5 years after age 65, leading to a prevalence of greater than 25% in those over the age of 90 (ref. 3). Here, to search for low-frequency variants in the amyloid-β precursor protein (APP) gene with a significant effect on the risk of Alzheimer’s disease, we studied coding variants in APP in a set of whole-genome sequence data from 1,795 Icelanders. We found a coding mutation (A673T) in the APP gene that protects against Alzheimer’s disease and cognitive decline in the elderly without Alzheimer’s disease. This substitution is adjacent to the aspartyl protease β-site in APP, and results in an approximately 40% reduction in the formation of amyloidogenic peptides in vitro. The strong protective effect of the A673T substitution against Alzheimer’s disease provides proof of principle for the hypothesis that reducing the β-cleavage of APP may protect against the disease. Furthermore, as the A673T allele also protects against cognitive decline in the elderly without Alzheimer’s disease, the two may be mediated through the same or similar mechanisms.


Nature Genetics | 2009

Sequence variants affecting eosinophil numbers associate with asthma and myocardial infarction

Daniel F. Gudbjartsson; Unnur S. Bjornsdottir; Eva Halapi; Anna Helgadottir; Patrick Sulem; Gudrun M. Jonsdottir; Gudmar Thorleifsson; Hafdis T. Helgadottir; Valgerdur Steinthorsdottir; Hreinn Stefansson; Carolyn Williams; Jennie Hui; John Beilby; Nicole M. Warrington; Alan James; Lyle J. Palmer; Gerard H. Koppelman; Andrea Heinzmann; Marcus Krueger; H. Marike Boezen; Amanda Wheatley; Janine Altmüller; Hyoung Doo Shin; Soo-Taek Uh; Hyun Sub Cheong; Brynja Jonsdottir; David Gislason; Choon-Sik Park; Lm Rasmussen; Celeste Porsbjerg

Eosinophils are pleiotropic multifunctional leukocytes involved in initiation and propagation of inflammatory responses and thus have important roles in the pathogenesis of inflammatory diseases. Here we describe a genome-wide association scan for sequence variants affecting eosinophil counts in blood of 9,392 Icelanders. The most significant SNPs were studied further in 12,118 Europeans and 5,212 East Asians. SNPs at 2q12 (rs1420101), 2q13 (rs12619285), 3q21 (rs4857855), 5q31 (rs4143832) and 12q24 (rs3184504) reached genome-wide significance (P = 5.3 × 10−14, 5.4 × 10−10, 8.6 × 10−17, 1.2 × 10−10 and 6.5 × 10−19, respectively). A SNP at IL1RL1 associated with asthma (P = 5.5 × 10−12) in a collection of ten different populations (7,996 cases and 44,890 controls). SNPs at WDR36, IL33 and MYB that showed suggestive association with eosinophil counts were also associated with atopic asthma (P = 4.2 × 10−6, 2.2 × 10−5 and 2.4 × 10−4, respectively). We also found that a nonsynonymous SNP at 12q24, in SH2B3, associated significantly (P = 8.6 × 10−8) with myocardial infarction in six different populations (6,650 cases and 40,621 controls).


Nature Communications | 2015

Variants in ELL2 influencing immunoglobulin levels associate with multiple myeloma

Bhairavi Swaminathan; Guðmar Thorleifsson; Magnus Jöud; Mina Ali; Ellinor Johnsson; Ram Ajore; Patrick Sulem; Britt-Marie Halvarsson; Guðmundur Eyjolfsson; Vilhelmína Haraldsdóttir; Christina M. Hultman; Erik Ingelsson; Sigurður Yngvi Kristinsson; Anna K. Kähler; Stig Lenhoff; Gisli Masson; Ulf-Henrik Mellqvist; Robert Månsson; Sven Nelander; Isleifur Olafsson; Olof Sigurðardottir; Hlif Steingrimsdottir; Annette Juul Vangsted; Ulla Vogel; Anders Waage; Hareth Nahi; Daniel F. Gudbjartsson; Thorunn Rafnar; Ingemar Turesson; Urban Gullberg

Multiple myeloma (MM) is characterized by an uninhibited, clonal growth of plasma cells. While first-degree relatives of patients with MM show an increased risk of MM, the genetic basis of inherited MM susceptibility is incompletely understood. Here we report a genome-wide association study in the Nordic region identifying a novel MM risk locus at ELL2 (rs56219066T; odds ratio (OR)=1.25; P=9.6 × 10−10). This gene encodes a stoichiometrically limiting component of the super-elongation complex that drives secretory-specific immunoglobulin mRNA production and transcriptional regulation in plasma cells. We find that the MM risk allele harbours a Thr298Ala missense variant in an ELL2 domain required for transcription elongation. Consistent with a hypomorphic effect, we find that the MM risk allele also associates with reduced levels of immunoglobulin A (IgA) and G (IgG) in healthy subjects (P=8.6 × 10−9 and P=6.4 × 10−3, respectively) and, potentially, with an increased risk of bacterial meningitis (OR=1.30; P=0.0024).


Nature | 2009

Parental origin of sequence variants associated with complex diseases.

Augustine Kong; Valgerdur Steinthorsdottir; Gisli Masson; Gudmar Thorleifsson; Patrick Sulem; Søren Besenbacher; Aslaug Jonasdottir; Asgeir Sigurdsson; Kari T. Kristinsson; Adalbjorg Jonasdottir; Michael L. Frigge; Arnaldur Gylfason; Pall Olason; Sigurjon A. Gudjonsson; Sverrir Sverrisson; Simon N. Stacey; Bardur Sigurgeirsson; Kristrun R. Benediktsdottir; Helgi Sigurdsson; Thorvaldur Jonsson; Rafn Benediktsson; Jón Ólafsson; Oskar Th Johannsson; Astradur B. Hreidarsson; Gunnar Sigurdsson; Anne C. Ferguson-Smith; Daniel F. Gudbjartsson; Unnur Thorsteinsdottir; Kari Stefansson

Effects of susceptibility variants may depend on from which parent they are inherited. Although many associations between sequence variants and human traits have been discovered through genome-wide associations, the impact of parental origin has largely been ignored. Here we show that for 38,167 Icelanders genotyped using single nucleotide polymorphism (SNP) chips, the parental origin of most alleles can be determined. For this we used a combination of genealogy and long-range phasing. We then focused on SNPs that associate with diseases and are within 500 kilobases of known imprinted genes. Seven independent SNP associations were examined. Five—one with breast cancer, one with basal-cell carcinoma and three with typeu20092 diabetes—have parental-origin-specific associations. These variants are located in two genomic regions, 11p15 and 7q32, each harbouring a cluster of imprinted genes. Furthermore, we observed a novel association between the SNP rs2334499 at 11p15 and typeu20092 diabetes. Here the allele that confers risk when paternally inherited is protective when maternally transmitted. We identified a differentially methylated CTCF-binding site at 11p15 and demonstrated correlation of rs2334499 with decreased methylation of that site.


Nature Genetics | 2015

Large-scale whole-genome sequencing of the Icelandic population

Daniel F. Gudbjartsson; Hannes Helgason; Sigurjon A. Gudjonsson; Florian Zink; Asmundur Oddson; Arnaldur Gylfason; Søren Besenbacher; Gisli Magnusson; Bjarni V. Halldórsson; Eirikur Hjartarson; Gunnar Sigurdsson; Simon N. Stacey; Michael L. Frigge; Hilma Holm; Jona Saemundsdottir; Hafdis T. Helgadottir; Hrefna Johannsdottir; Gunnlaugur Sigfússon; Gudmundur Thorgeirsson; Jon T. Sverrisson; Solveig Gretarsdottir; G. Bragi Walters; Thorunn Rafnar; Bjarni Thjodleifsson; Einar Björnsson; Sigurdur Olafsson; Hildur Thorarinsdottir; Thora Steingrimsdottir; Thora S. Gudmundsdottir; Ásgeir Theodórs

Here we describe the insights gained from sequencing the whole genomes of 2,636 Icelanders to a median depth of 20×. We found 20 million SNPs and 1.5 million insertions-deletions (indels). We describe the density and frequency spectra of sequence variants in relation to their functional annotation, gene position, pathway and conservation score. We demonstrate an excess of homozygosity and rare protein-coding variants in Iceland. We imputed these variants into 104,220 individuals down to a minor allele frequency of 0.1% and found a recessive frameshift mutation in MYL4 that causes early-onset atrial fibrillation, several mutations in ABCB4 that increase risk of liver diseases and an intronic variant in GNAS associating with increased thyroid-stimulating hormone levels when maternally inherited. These data provide a study design that can be used to determine how variation in the sequence of the human genome gives rise to human diversity.


Nature | 2013

Nonsense mutation in the LGR4 gene is associated with several human diseases and other traits

Unnur Styrkarsdottir; Gudmar Thorleifsson; Patrick Sulem; Daniel F. Gudbjartsson; Asgeir Sigurdsson; Aslaug Jonasdottir; Adalbjorg Jonasdottir; Asmundur Oddsson; Agnar Helgason; Olafur T. Magnusson; G. Bragi Walters; Michael L. Frigge; Hafdis T. Helgadottir; Hrefna Johannsdottir; Kristin Bergsteinsdottir; Margret H. Ogmundsdottir; Tuan V. Nguyen; John A. Eisman; Claus Christiansen; Erikur Steingrimsson; Jon G. Jonasson; Laufey Tryggvadottir; Gudmundur I. Eyjolfsson; Ásgeir Theodórs; Thorvaldur Jonsson; Thorvaldur Ingvarsson; Isleifur Olafsson; Thorunn Rafnar; Augustine Kong; Gunnar Sigurdsson

Low bone mineral density (BMD) is used as a parameter of osteoporosis. Genome-wide association studies of BMD have hitherto focused on BMD as a quantitative trait, yielding common variants of small effects that contribute to the population diversity in BMD. Here we use BMD as a dichotomous trait, searching for variants that may have a direct effect on the risk of pathologically low BMD rather than on the regulation of BMD in the healthy population. Through whole-genome sequencing of Icelandic individuals, we found a rare nonsense mutation within the leucine-rich-repeat-containing G-protein-coupled receptor 4 (LGR4) gene (c.376C>T) that is strongly associated with low BMD, and with osteoporotic fractures. This mutation leads to termination of LGR4 at position 126 and fully disrupts its function. The c.376C>T mutation is also associated with electrolyte imbalance, late onset of menarche and reduced testosterone levels, as well as an increased risk of squamous cell carcinoma of the skin and biliary tract cancer. Interestingly, the phenotype of carriers of the c.376C>T mutation overlaps that of Lgr4 mutant mice.


Nature Genetics | 2015

Loss-of-function variants in ABCA7 confer risk of Alzheimer's disease.

Stacy Steinberg; Hreinn Stefansson; Thorlakur Jonsson; Hrefna Johannsdottir; Andres Ingason; Hannes Helgason; Patrick Sulem; Olafur T. Magnusson; Sigurjon A. Gudjonsson; Unnur Unnsteinsdottir; Augustine Kong; Seppo Helisalmi; Hilkka Soininen; James J. Lah; DemGene; Dag Aarsland; Tormod Fladby; Ingun Ulstein; Srdjan Djurovic; Sigrid Botne Sando; Linda R. White; Gun-Peggy Knudsen; Lars T. Westlye; Geir Selbæk; Ina Giegling; Harald Hampel; Mikko Hiltunen; Allan I. Levey; Ole A. Andreassen; Dan Rujescu

We conducted a search for rare, functional variants altering susceptibility to Alzheimers disease that exploited knowledge of common variants associated with the same disease. We found that loss-of-function variants in ABCA7 confer risk of Alzheimers disease in Icelanders (odds ratio (OR) = 2.12, P = 2.2 × 10−13) and discovered that the association replicated in study groups from Europe and the United States (combined OR = 2.03, P = 6.8 × 10−15).


Nature Genetics | 2015

Identification of a large set of rare complete human knockouts

Patrick Sulem; Hannes Helgason; Asmundur Oddson; Hreinn Stefansson; Sigurjon A. Gudjonsson; Florian Zink; Eirikur Hjartarson; Gunnar Sigurdsson; Adalbjorg Jonasdottir; Aslaug Jonasdottir; Asgeir Sigurdsson; Olafur T. Magnusson; Augustine Kong; Agnar Helgason; Hilma Holm; Unnur Thorsteinsdottir; Gisli Masson; Daniel F. Gudbjartsson; Kari Stefansson

Loss-of-function mutations cause many mendelian diseases. Here we aimed to create a catalog of autosomal genes that are completely knocked out in humans by rare loss-of-function mutations. We sequenced the whole genomes of 2,636 Icelanders and imputed the sequence variants identified in this set into 101,584 additional chip-genotyped and phased Icelanders. We found a total of 6,795 autosomal loss-of-function SNPs and indels in 4,924 genes. Of the genotyped Icelanders, 7.7% are homozygotes or compound heterozygotes for loss-of-function mutations with a minor allele frequency (MAF) below 2% in 1,171 genes (complete knockouts). Genes that are highly expressed in the brain are less often completely knocked out than other genes. Homozygous loss-of-function offspring of two heterozygous parents occurred less frequently than expected (deficit of 136 per 10,000 transmissions for variants with MAF <2%, 95% confidence interval (CI) = 10–261).


Nature Genetics | 2016

Variants with large effects on blood lipids and the role of cholesterol and triglycerides in coronary disease

Anna Helgadottir; Solveig Gretarsdottir; Gudmar Thorleifsson; Eirikur Hjartarson; Asgeir Sigurdsson; Audur Magnusdottir; Aslaug Jonasdottir; Helgi Kristjansson; Patrick Sulem; Asmundur Oddsson; Gardar Sveinbjornsson; Valgerdur Steinthorsdottir; Thorunn Rafnar; Gisli Masson; Ingileif Jonsdottir; Isleifur Olafsson; Gudmundur I. Eyjolfsson; Olof Sigurdardottir; Maryam Sadat Daneshpour; Davood Khalili; Fereidoun Azizi; Dorine W. Swinkels; Lambertus A. Kiemeney; Arshed A. Quyyumi; Allan I. Levey; Riyaz S. Patel; Salim S. Hayek; Ingibjörg J. Gudmundsdóttir; Gudmundur Thorgeirsson; Unnur Thorsteinsdottir

Sequence variants affecting blood lipids and coronary artery disease (CAD) may enhance understanding of the atherogenicity of lipid fractions. Using a large resource of whole-genome sequence data, we examined rare and low-frequency variants for association with non-HDL cholesterol, HDL cholesterol, LDL cholesterol, and triglycerides in up to 119,146 Icelanders. We discovered 13 variants with large effects (within ANGPTL3, APOB, ABCA1, NR1H3, APOA1, LIPC, CETP, LDLR, and APOC1) and replicated 14 variants. Five variants within PCSK9, APOA1, ANGPTL4, and LDLR associate with CAD (33,090 cases and 236,254 controls). We used genetic risk scores for the lipid fractions to examine their causal relationship with CAD. The non-HDL cholesterol genetic risk score associates most strongly with CAD (P = 2.7 × 10−28), and no other genetic risk score associates with CAD after accounting for non-HDL cholesterol. The genetic risk score for non-HDL cholesterol confers CAD risk beyond that of LDL cholesterol (P = 5.5 × 10−8), suggesting that targeting atherogenic remnant cholesterol may reduce cardiovascular risk.

Collaboration


Dive into the Patrick Sulem's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge