Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrick T. Ellinor is active.

Publication


Featured researches published by Patrick T. Ellinor.


Circulation | 2014

2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society

Craig T. January; L. Samuel Wann; Joseph S. Alpert; Hugh Calkins; Joaquin E. Cigarroa; Joseph C. Cleveland; Jamie B. Conti; Patrick T. Ellinor; Michael D. Ezekowitz; Michael E. Field; Katherine T. Murray; Ralph L. Sacco; William G. Stevenson; Patrick Tchou; Cynthia M. Tracy; Clyde W. Yancy

Jeffrey L. Anderson, MD, FACC, FAHA, Chair Jonathan L. Halperin, MD, FACC, FAHA, Chair-Elect Nancy M. Albert, PhD, RN, FAHA Biykem Bozkurt, MD, PhD, FACC, FAHA Ralph G. Brindis, MD, MPH, MACC Mark A. Creager, MD, FACC, FAHA[#][1] Lesley H. Curtis, PhD, FAHA David DeMets, PhD[#][1] Robert A


Heart Rhythm | 2011

HRS/EHRA Expert Consensus Statement on the State of Genetic Testing for the Channelopathies and Cardiomyopathies: This document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA)

Michael J. Ackerman; Silvia G. Priori; Stephan Willems; Charles I. Berul; Ramon Brugada; Hugh Calkins; A. John Camm; Patrick T. Ellinor; Michael H. Gollob; Robert M. Hamilton; Ray E. Hershberger; Daniel P. Judge; Hervé Le Marec; William J. McKenna; Eric Schulze-Bahr; Christopher Semsarian; Jeffrey A. Towbin; Hugh Watkins; Arthur A.M. Wilde; Christian Wolpert; Douglas P. Zipes

Michael J. Ackerman, MD, PhD, Silvia G. Priori, MD, PhD, Stephan Willems, MD, PhD, Charles Berul, MD, FHRS, CCDS, Ramon Brugada, MD, PhD, Hugh Calkins, MD, FHRS, CCDS, A. John Camm, MD, FHRS, Patrick T. Ellinor, MD, PhD, Michael Gollob, MD, Robert Hamilton, MD, CCDS, Ray E. Hershberger, MD, Daniel P. Judge, MD, Hervè Le Marec, MD, William J. McKenna, MD, Eric Schulze-Bahr, MD, PhD, Chris Semsarian, MBBS, PhD, Jeffrey A. Towbin, MD, Hugh Watkins, MD, PhD, Arthur Wilde, MD, PhD, Christian Wolpert, MD, Douglas P. Zipes, MD, FHRS


Circulation | 2014

2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation: Executive Summary

Craig T. January; L. Samuel Wann; Vice Chair; Joseph S. Alpert; Hugh Calkins; Joaquin E. Cigarroa; Joseph C. Cleveland; Jamie B. Conti; Patrick T. Ellinor; Michael D. Ezekowitz; Michael E. Field; Katherine T. Murray; Ralph L. Sacco; William G. Stevenson; Patrick Tchou; Cynthia M. Tracy; Clyde W. Yancy

Preamble 2072 1. Introduction 2074 2. Clinical Characteristics and Evaluation of AF 2076 3. Thromboembolic Risk and Treatment 2077 4. Rate Control: Recommendations 2079 5. Rhythm Control: Recommendations 2080 6. Specific Patient Groups and AF: Recommendations 2086 7. Evidence Gaps and Future Research Directions 2089 References 2090 Appendix 1. Author Relationships With Industry and Other Entities (Relevant) 2095 Appendix 2. Reviewer Relationships With Industry and Other Entities (Relevant) 2097 Appendix 3. Initial Clinical Evaluation in Patients With AF 2104 The medical profession should play a central role in evaluating the evidence related to drugs, devices, and procedures for the detection, management, and prevention of disease. When properly applied, expert analysis of available data on the benefits and risks of these therapies and procedures can improve the quality of care, optimize patient outcomes, and favorably affect costs by focusing resources on the most effective strategies. An organized …


Nature | 2007

Variants conferring risk of atrial fibrillation on chromosome 4q25.

Daniel F. Gudbjartsson; David O. Arnar; Anna Helgadottir; Solveig Gretarsdottir; Hilma Holm; Asgeir Sigurdsson; Adalbjorg Jonasdottir; Adam Baker; Gudmar Thorleifsson; Kristleifur Kristjansson; Arnar Palsson; Thorarinn Blondal; Patrick Sulem; Valgerdur M. Backman; Gudmundur A. Hardarson; Ebba Palsdottir; Agnar Helgason; Runa Sigurjonsdottir; Jon T. Sverrisson; Konstantinos Kostulas; Maggie C.Y. Ng; Larry Baum; Wing Yee So; Ka Sing Wong; Juliana C.N. Chan; Karen L. Furie; Steven M. Greenberg; Michelle Sale; Peter J. Kelly; Calum A. MacRae

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia in humans and is characterized by chaotic electrical activity of the atria. It affects one in ten individuals over the age of 80 years, causes significant morbidity and is an independent predictor of mortality. Recent studies have provided evidence of a genetic contribution to AF. Mutations in potassium-channel genes have been associated with familial AF but account for only a small fraction of all cases of AF. We have performed a genome-wide association scan, followed by replication studies in three populations of European descent and a Chinese population from Hong Kong and find a strong association between two sequence variants on chromosome 4q25 and AF. Here we show that about 35% of individuals of European descent have at least one of the variants and that the risk of AF increases by 1.72 and 1.39 per copy. The association with the stronger variant is replicated in the Chinese population, where it is carried by 75% of individuals and the risk of AF is increased by 1.42 per copy. A stronger association was observed in individuals with typical atrial flutter. Both variants are adjacent to PITX2, which is known to have a critical function in left–right asymmetry of the heart.


Nature Genetics | 2004

Mutations in the desmosomal protein plakophilin-2 are common in arrhythmogenic right ventricular cardiomyopathy

Brenda Gerull; Arnd Heuser; Thomas Wichter; Matthias Paul; Craig T. Basson; Deborah A. McDermott; Bruce B. Lerman; Steve Markowitz; Patrick T. Ellinor; Calum A. MacRae; Stefan Peters; Katja S. Grossmann; Beate Michely; Sabine Sasse-Klaassen; Walter Birchmeier; Rainer Dietz; Günter Breithardt; Eric Schulze-Bahr; Ludwig Thierfelder

Arrhythmogenic right ventricular cardiomyopathy (ARVC) is associated with fibrofatty replacement of cardiac myocytes, ventricular tachyarrhythmias and sudden cardiac death. In 32 of 120 unrelated individuals with ARVC, we identified heterozygous mutations in PKP2, which encodes plakophilin-2, an essential armadillo-repeat protein of the cardiac desmosome. In two kindreds with ARVC, disease was incompletely penetrant in most carriers of PKP2 mutations.


Neuropharmacology | 1993

Distinctive pharmacology and kinetics of cloned neuronal Ca2+ channels and their possible counterparts in mammalian CNS neurons

Ji-Fang Zhang; Andrew D. Randall; Patrick T. Ellinor; William A. Horne; William A. Sather; T. Tanabe; T. Schwarz; Richard W. Tsien

This paper provides a brief overview of the diversity of voltage-gated Ca2+ channels and our recent work on neuronal Ca2+ channels with novel pharmacological and biophysical properties that distinguish them from L, N, P or T-type channels. The Ca2+ channel alpha 1 subunit known as alpha 1A or BI [Mori Y., Friedrich T., Kim M.-S., Mikami A., Nakai J., Ruth P., Bosse E., Hofmann F., Flockerzi V., Furuichi T., Mikoshiba K., Imoto K., Tanabe T. and Numa S. (1991) Nature 350, 398-402] is generally assumed to encode the P-type Ca2+ channel. However, we find that alpha 1A expressed in Xenopus oocytes differs from P-type channels in its kinetics of inactivation and its degree of sensitivity to block by the peptide toxins omega-Aga-IVA and omega-CTx-MVIIC [Sather W. A., Tanabe T., Zhang J.-F., Mori Y., Adams M. E. and Tsien R. W. (1993) Neuron 11, 291-303]. Thus, alpha 1A is capable of generating a Ca2+ channel with characteristics quite distinct from P-type channels. Doe-1, recently cloned from the forebrain of a marine ray, is another alpha 1 subunit which exemplifies a different branch of the Ca2+ channel family tree [Horne W. A., Ellinor P. T., Inman I., Zhou M., Tsien R. W. and Schwarz T. L. (1993) Proc. Natn. Acad. Sci. U.S.A. 90, 3787-3791]. When expressed in Xenopus oocytes, doe-1 forms a high voltage-activated (HVA) Ca2+ channel [Ellinor P. T., Zhang J.-F., Randall A. D., Zhou M., Schwarz T. L., Tsien R. W. and Horne W. (1993) Nature 363, 455-458]. It inactivates more rapidly than any previously expressed calcium channel and is not blocked by dihydropyridine antagonists or omega-Aga-IVA. Doe-1 current is reduced by omega-CTx-GVIA, but the inhibition is readily reversible and requires micromolar toxin, in contrast to this toxins potent and irreversible block of N-type channels. Doe-1 shows considerable sensitivity to block by Ni2+ or Cd2+. We have identified components of Ca2+ channel current in rat cerebellar granule neurons with kinetic and pharmacological features similar to alpha 1A and doe-1 in oocytes [Randall A. D., Wendland B., Schweizer F., Miljanich G., Adams M. E. and Tsien R. W. (1993) Soc. Neurosci. Abstr. 19, 1478]. The doe-1-like component (R-type current) inactivates much more quickly than L, N or P-type channels, and also differs significantly in its pharmacology.(ABSTRACT TRUNCATED AT 400 WORDS)


Trends in Pharmacological Sciences | 1991

Molecular diversity of voltage-dependent Ca2+ channels

Richard W. Tsien; Patrick T. Ellinor; William A. Horne

Voltage-dependent Ca2+ channels regulate Ca2+ entry and thereby contribute to Ca2+ signalling in many cells. Functional studies have uncovered several types of Ca2+ channel, distinguished by pharmacology, electrophysiology and tissue localization. More recently, molecular cloning has revealed an even greater diversity among Ca2+ channels, arising from multiple genes and alternative splicing. L-type, dihydropyridine-sensitive Ca2+ channels have been the most extensively characterized to date. Recently, Numas group has reported the cloning and expression of a dihydropyridine-insensitive Ca2+ channel from brain that most closely resembles the P-type channel described by Llinas and colleagues. These results contribute to rapidly growing knowledge about molecular determinants of Ca2+ channel diversity.


Nature Genetics | 2010

Common variants in KCNN3 are associated with lone atrial fibrillation

Patrick T. Ellinor; Kathryn L. Lunetta; Nicole L. Glazer; Arne Pfeufer; Alvaro Alonso; Mina K. Chung; Moritz F. Sinner; Paul I. W. de Bakker; Martina Mueller; Steven A. Lubitz; Ervin R. Fox; Dawood Darbar; Nicholas L. Smith; Jonathan D. Smith; Renate B. Schnabel; Elsayed Z. Soliman; Kenneth Rice; David R. Van Wagoner; Britt-M. Beckmann; Charlotte van Noord; Ke Wang; Georg Ehret; Jerome I. Rotter; Stanley L. Hazen; Gerhard Steinbeck; Albert V. Smith; Lenore J. Launer; Tamara B. Harris; Seiko Makino; Mari Nelis

Atrial fibrillation (AF) is the most common sustained arrhythmia. Previous studies have identified several genetic loci associated with typical AF. We sought to identify common genetic variants underlying lone AF. This condition affects a subset of individuals without overt heart disease and with an increased heritability of AF. We report a meta-analysis of genome-wide association studies conducted using 1,335 individuals with lone AF (cases) and 12,844 unaffected individuals (referents). Cases were obtained from the German AF Network, Heart and Vascular Health Study, the Atherosclerosis Risk in Communities Study, the Cleveland Clinic and Massachusetts General Hospital. We identified an association on chromosome 1q21 to lone AF (rs13376333, adjusted odds ratio = 1.56; P = 6.3 × 10−12), and we replicated this association in two independent cohorts with lone AF (overall combined odds ratio = 1.52, 95% CI 1.40–1.64; P = 1.83 × 10−21). rs13376333 is intronic to KCNN3, which encodes a potassium channel protein involved in atrial repolarization.


Circulation | 2009

Prevention of atrial fibrillation: report from a national heart, lung, and blood institute workshop.

Emelia J. Benjamin; Peng Sheng Chen; Diane E. Bild; Alice M. Mascette; Christine M. Albert; Alvaro Alonso; Hugh Calkins; Stuart J. Connolly; Anne B. Curtis; Dawood Darbar; Patrick T. Ellinor; Alan S. Go; Nora Goldschlager; Susan R. Heckbert; José Jalife; Charles R. Kerr; Daniel Levy; Donald M. Lloyd-Jones; Barry M. Massie; Stanley Nattel; Jeffrey E. Olgin; Douglas L. Packer; Sunny S. Po; Teresa S M Tsang; David R. Van Wagoner; Albert L. Waldo; D. George Wyse

The National Heart, Lung, and Blood Institute convened an expert panel April 28 to 29, 2008, to identify gaps and recommend research strategies to prevent atrial fibrillation (AF). The panel reviewed the existing basic scientific, epidemiological, and clinical literature about AF and identified opportunities to advance AF prevention research. After discussion, the panel proposed the following recommendations: (1) enhance understanding of the epidemiology of AF in the population by systematically and longitudinally investigating symptomatic and asymptomatic AF in cohort studies; (2) improve detection of AF by evaluating the ability of existing and emerging methods and technologies to detect AF; (3) improve noninvasive modalities for identifying key components of cardiovascular remodeling that promote AF, including genetic, fibrotic, autonomic, structural, and electrical remodeling markers; (4) develop additional animal models reflective of the pathophysiology of human AF; (5) conduct secondary analyses of already-completed clinical trials to enhance knowledge of potentially effective methods to prevent AF and routinely include AF as an outcome in ongoing and future cardiovascular studies; and (6) conduct clinical studies focused on secondary prevention of AF recurrence, which would inform future primary prevention investigations.The National Heart, Lung, and Blood Institute convened an expert panel April 28-29, 2008 to identify gaps and recommend research strategies to prevent atrial fibrillation (AF). The panel reviewed the existing basic scientific, epidemiologic and clinical literature about AF, and identified opportunities to advance AF prevention research. After discussion, the panel proposed the following recommendations: 1) Enhance understanding of the epidemiology of AF in the population by systematically and longitudinally investigating symptomatic and asymptomatic AF in cohort studies; 2) Improve detection of AF by evaluating the ability of existing and emerging methods and technologies to detect AF; 3) Improve noninvasive modalities for identifying key components of cardiovascular remodeling that promote AF, including genetic, fibrotic, autonomic, structural and electrical remodeling markers; 4) Develop additional animal models reflective of the pathophysiology of human AF; 5) Conduct secondary analyses of already-completed clinical trials to enhance knowledge of potentially effective methods to prevent AF and routinely include AF as an outcome in ongoing and future cardiovascular studies; and 6) Conduct clinical studies focused on secondary prevention of AF recurrence, which would inform future primary prevention investigations.


Nature Genetics | 2012

Meta-analysis identifies six new susceptibility loci for atrial fibrillation

Patrick T. Ellinor; Kathryn L. Lunetta; Christine M. Albert; Nicole L. Glazer; Marylyn D. Ritchie; Albert V. Smith; Dan E. Arking; Martina Müller-Nurasyid; Bouwe P. Krijthe; Steven A. Lubitz; Joshua C. Bis; Mina K. Chung; Marcus Dörr; Kouichi Ozaki; Jason D. Roberts; J. Gustav Smith; Arne Pfeufer; Moritz F. Sinner; Kurt Lohman; Jingzhong Ding; Nicholas L. Smith; Jonathan D. Smith; Michiel Rienstra; Kenneth Rice; David R. Van Wagoner; Jared W. Magnani; Reza Wakili; Sebastian Clauss; Jerome I. Rotter; Gerhard Steinbeck

Atrial fibrillation is a highly prevalent arrhythmia and a major risk factor for stroke, heart failure and death. We conducted a genome-wide association study (GWAS) in individuals of European ancestry, including 6,707 with and 52,426 without atrial fibrillation. Six new atrial fibrillation susceptibility loci were identified and replicated in an additional sample of individuals of European ancestry, including 5,381 subjects with and 10,030 subjects without atrial fibrillation (P < 5 × 10−8). Four of the loci identified in Europeans were further replicated in silico in a GWAS of Japanese individuals, including 843 individuals with and 3,350 individuals without atrial fibrillation. The identified loci implicate candidate genes that encode transcription factors related to cardiopulmonary development, cardiac-expressed ion channels and cell signaling molecules.

Collaboration


Dive into the Patrick T. Ellinor's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David D. McManus

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Calum A. MacRae

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge