Patrick Turck
Universidade Federal do Rio Grande do Sul
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Patrick Turck.
Cytotherapy | 2014
Raquel Calloni; Gabrihel Stumpf Viegas; Patrick Turck; Diego Bonatto; João Antonio Pêgas Henriques
Mesenchymal stromal cells (MSCs) are multipotent, plastic, adherent cells able to differentiate into osteoblasts, chondroblasts and adipocytes. MSCs can be isolated from many different body compartments of adult and fetal individuals. The most commonly studied MSCs are isolated from humans, mice and rats. However, studies are also being conducted with the use of MSCs that originate from different model organisms, such as cats, dogs, guinea pigs, ducks, chickens, buffalo, cattle, sheep, goats, horses, rabbits and pigs. MSCs derived from unconventional model organisms all present classic fibroblast-like morphology, the expression of MSC-associated cell surface markers such as CD44, CD73, CD90 and CD105 and the absence of CD34 and CD45. Moreover, these MSCs have the ability to differentiate into osteoblasts, chondroblasts and adipocytes. The MSCs isolated from unconventional model organisms are being studied for their potential to heal different tissue defects and injuries and for the development of scaffold compositions that improve the proliferation and differentiation of MSCs for tissue engineering.
BioMed Research International | 2015
Patrick Turck; Marcos Emilio dos Santos Frizzo
Brain-derived neurotrophic factor (BDNF) has several functions in the central nervous system, where it contributes to brain development and its functionality through affecting neuronal survival and activity and also modulating neurotransmitter levels. This neurotrophin is also found in the serum, but its origin and peripheral function remain unknown. Although the source of circulating BDNF is uncertain, it is stored in platelets and can be released through pharmacological treatment. Decreased levels of BDNF in the serum have been related to the pathophysiology of depression, and this relationship is reinforced by the reversal of this condition by treatment with antidepressants. Recently, riluzole has been proposed for the treatment of depression because it has the ability to lower extracellular glutamate levels and increase BDNF expression; and both mechanisms could be associated with its antidepressant action. Considering that riluzole enhances BDNF levels in the serum of patients, we investigated if treatment with this drug could stimulate the release of this neurotrophin from human platelets obtained from healthy subjects. When platelets were incubated with riluzole for 4 h, the basal value of BDNF (92.9 ± 11.1 pg 10−6 platelets) was significantly increased (P < 0.05, n = 27). This stimulatory effect was achieved at low concentrations of riluzole (from 10 µM) and was not observed when platelets were incubated with the drug for 24 h. The direct action of riluzole evoking BDNF release from human platelets at therapeutic concentrations is important and may contribute to the understanding of its mechanisms of action in the treatment of depression.
Microbes and Environments | 2015
Maira Peres de Carvalho; Patrick Turck; Wolf-Rainer Abraham
Fungi grow under humid conditions and are, therefore, prone to biofilm infections. A 16S rRNA fingerprint analysis was performed on 49 sporocarps of Basidiomycotina in order to determine whether they are able to control these biofilms. Ninety-five bacterial phylotypes, comprising 4 phyla and 10 families, were identified. While ectomycorrhizal fungi harbored the highest bacterial diversity, saprophytic fungi showed little or no association with bacteria. Seven fungal species were screened for antimicrobial and antibiofilm activities. Biofilm formation and bacterial growth was inhibited by extracts obtained from saprophytic fungi, which confirmed the hypothesis that many fungi modulate biofilm colonization on their sporocarps.
British Journal of Pharmacology | 2017
Denise dos Santos Lacerda; Patrick Turck; Bruna Gazzi de Lima-Seolin; Rafael Colombo; Vanessa Duarte Ortiz; Jéssica Hellen Poletto Bonetto; Cristina Campos-Carraro; Sara Elis Bianchi; Adriane Belló-Klein; Valquiria Linck Bassani; Alex Sander da Rosa Araujo
In cor pulmonale, the increased afterload imposed on the right ventricle (RV) generates a maladaptive response, impairing the contractile cardiac function. Oxidative mechanisms play an important role in the pathophysiology and progression of this disease. The administration of pterostilbene (PTS), a phytophenol with antioxidant potential, may represent a therapeutic option. In the present study, we evaluated the effect of PTS complexed with hydroxypropyl‐β‐cyclodextrin (HPβCD) on hypertrophy, contractile function and oxidative parameters in the RV of rats with pulmonary hypertension, induced by the administration of monocrotaline (MCT).
Biomedicine & Pharmacotherapy | 2017
Rayane Brinck Teixeira; Alexsandra Zimmer; Alexandre Luz de Castro; Bruna Gazzi de Lima-Seolin; Patrick Turck; Rafaela Siqueira; Adriane Belló-Klein; Pawan K. Singal; Alex Sander da Rosa Araujo
Here we aimed to compare the beneficial effects of T3 and T4 hormone treatment to those provided by aerobic exercise training in Wistar rats post-myocardial infarction (MI). Rats in one group were SHAM-operated and in the other group were subjected to MI surgery. One week after surgery, the MI group animals either received T3 and T4 hormones by gavage or underwent a low intensity aerobic exercise training protocol on a treadmill, and both treatments lasted until 10 weeks after MI. Untreated SHAM-operated and MI groups were also followed for the same duration. The cardiac function was assessed by echocardiography and catheterization, followed by blood collection (to measure T3, T4, and TSH hormones), and euthanasia. The lung, liver, heart, and tibia were collected (to assess hypertrophy and congestion indices). The left ventricle homogenate (without a scar) was used for the analyses of calcium handling proteins. Results showed that enhanced cardiac function was promoted by both interventions, with infarct size reduction, increased ejection fraction, and diastolic posterior wall thickness, but no alterations in heart rate, cardiac output, or T3, T4, and TSH levels. There was a positive force-frequency relationship accompanied by increased α-MHC, as well as decreased HSP70 protein expression. In conclusion, the effects of T3 and T4 hormone treatments were similar, and in some parameters superior, to those provided by the aerobic exercise training. Thus, lower doses of thyroid hormones could be more suitable as a coadjuvant treatment after MI, as a plausible alternative for patients who are intolerant to aerobic exercise training.
Medicinal Chemistry Research | 2018
Denise dos Santos Lacerda; Sara Elis Bianchi; Wesley L. Pinós; Cristina Campos-Carraro; Patrick Turck; Alexandre Roberto Hickmann; Vanessa Pittol; Rayane Brinck Teixeira; Adriane Belló-Klein; Valquiria Linck Bassani; Alex Sander da Rosa Araujo
The objectives of this study were to promote the aqueous solubility of pterostilbene (PTS) by complexation with hydroxypropyl-β-cyclodextrin (HPβCD), characterize the complex under physical aspects, to make its oral administration feasible in biological tests, and to investigate their pharmacological properties. For 14 days, rats received daily PTS:HPΒCD complex at doses of 25, 50, or 100 mg kg−1 per day orally. The results showed no kidney or liver damage, nor any induction of apoptosis by the administered doses. Also, the complex showed dose-dependent antioxidant effects in the rat liver, as evidenced by a reduction in lipid peroxidation and reactive oxygen species, as well as an increase in non-enzymatic antioxidant. PTS:HPΒCD complex also increased the expression of sensitive redox proteins such as AKT and GSK-3β related to the insulin signaling pathway in the liver. Thus, the complexation demonstrated to be able to increase the apparent solubility of PTS making feasible dose curve administration and could be a food alternative complementary to antioxidant therapeutic. Therefore, the PTS:HPβCD complex can be used for prevention of diseases related to oxidative damage and insulin signaling.
Free Radical Research | 2018
Denise dos Santos Lacerda; Vanessa Duarte Ortiz; Patrick Turck; Cristina Campos-Carraro; Alexsandra Zimmer; Rayane Brinck Teixeira; Sara Elis Bianchi; Alexandre Luz de Castro; Paulo Cavalheiro Schenkel; Adriane Belló-Klein; Valquiria Linck Bassani; Alex Sander da Rosa Araujo
Abstract Oxidative stress alters signalling pathways for survival and cell death favouring the adverse remodelling of postmyocardial remnant cardiomyocytes, promoting functional impairment. The administration of pterostilbene (PTS), a phytophenol with antioxidant potential, can promote cardioprotection and represents a therapeutic alternative in acute myocardial infarction (AMI). The present study aims to explore the effects of oral administration of PTS complexed with hydroxypropyl-β-cyclodextrin HPβCD (PTS:HPβCD complex) on the glutathione cycle, thiol protein activities and signalling pathways involving the protein kinase B (AKT) and glycogen synthase kinase-3β (GSK-3β) proteins in the left ventricle (LV) of infarcted rats. Animals were submitted to acute myocardial infarction through surgical ligation of the descending anterior branch of the left coronary artery and received over 8 days, by gavage, PTS:HPβCD complex at dose of 100 mg kg−1 day−1 (AMI + PTS group) or vehicle (aqueous solution with HPβCD) divided into Sham-operated (SHAM) and infarcted (AMI) groups. The results showed that the PBS: HPβCD complex decreased lipid peroxidation, prevented the decrease in thioredoxin reductase (TRxR) activity, and increased the activity of glutathione-S-transferase (GST) and glutaredoxin (GRx). Additionally, the expression of nuclear factor-erythroid two (Nrf2) and p-GSK-3β was increased, whereas the p-GSK-3β/GSK-3β ratio was reduced in the LV of the infarcted animals. Overall, the PTS:HPβCD complex modulates activity of thiol-dependent enzymes and induces to the expression of antioxidant proteins, improving systolic function and mitigating the adverse cardiac remodelling post infarction.
Biomedicine & Pharmacotherapy | 2018
Patrick Turck; Denise dos Santos Lacerda; Cristina Campos Carraro; Bruna Gazzi de Lima-Seolin; Rayane Brinck Teixeira; Jéssica Hellen Poletto Bonetto; Rafael Colombo; Paulo Cavalheiro Schenkel; Adriane Belló-Klein; Alex Sander da Rosa Araujo
BACKGROUND Pulmonary arterial hypertension is a disease characterized by increased pulmonary vascular resistance and redox imbalance, leading to failure of right ventricle. Trapidil has been described to improve the redox balance and cardiac conditions. HYPOTHESIS Trapidil can improve the redox balance and contribute to functional improvements of the RV in PAH. METHODS AND RESULTS Male, 5week-old Wistar rats were divided into four groups: Control, Control + Trapidil, Monocrotaline and Monocrotaline + Trapidil. PAH was induced by an intraperitoneal injection of monocrotaline 60 mg/kg at day 0. Treatment started at day 7 (5 or 8 mg/kg/day) until day 14, when animals were euthanized after echocardiography and catheterism. Right ventricular systolic pressure and pressure/time derivatives were increased in monocrotaline animals. The increased right ventricular diameters in monocrotaline groups were reduced with trapidil. Monocrotaline groups showed higher lipid peroxidation and glutathione peroxidase activity. Trapidil reduced NADPH oxidases activities and increased the reduced glutathiones/total glutathiones ratio. Protein expression of phospholamban in RV was diminished in monocrotaline groups, whereas expression of RyR and SERCA was enhanced in the groups treated with trapidil. CONCLUSION Our data suggest that trapidil induces an improvement in RV remodeling in PAH model, mitigating the progression of the disease.
Current Medicinal Chemistry | 2017
Adriane Belló-Klein; Daniele Mancardi; Alex Sander da Rosa Araujo; Paulo Cavalheiro Schenkel; Bruna Gazzi de Lima Seolin; Patrick Turck
This review addresses pulmonary arterial hypertension (PAH), an incurable disease, which determines high morbidity and mortality. Definition of the disease, its characteristics, classification, and epidemiology are discussed. A difficulty in the diagnosis of PAH due to the lack of symptoms specificity is highlighted. Echocardiographic analysis and electrocardiogram of patients help in the diagnosis and in the follow up of the disease. Nevertheless, right ventricle (RV) catheterization constitutes the gold standard for diagnosing PAH. Oxidative stress and inflammation, in an interactive manner, play a major role in the development of pulmonary vascular remodeling and consequent increase of pulmonary pressure. The latter results in an increase in RV afterload, culminating with RV hypertrophy, which may progress to failure. Both clinical and experimental studies have shown increased oxidative stress and inflammation, not only in lungs and pulmonary vasculature but also in RV. The use of experimental models, such as the monocrotaline-induced PAH, has helped in the understanding of the pathophysiology of PAH, as well as in the development of new therapeutic strategies. In addition to the traditional therapeutics, the use of therapeutic interventions capable of modulating oxidative stress and inflammation may offer newer strategies in the prevention as well as management of this disease.
Molecular and Cellular Biochemistry | 2017
Stephanie Puukila; Rafael Oliveira Fernandes; Patrick Turck; Cristina Campos Carraro; Jéssica Hellen Poletto Bonetto; Bruna Gazzi de Lima-Seolin; Alex Sander da Rosa Araujo; Adriane Belló-Klein; Douglas R. Boreham; Neelam Khaper