Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrick Van Dijck is active.

Publication


Featured researches published by Patrick Van Dijck.


Microbiology and Molecular Biology Reviews | 2007

Environmental Sensing and Signal Transduction Pathways Regulating Morphopathogenic Determinants of Candida albicans

Subhrajit Biswas; Patrick Van Dijck; Asis Datta

SUMMARY Candida albicans is an opportunistic fungal pathogen that is found in the normal gastrointestinal flora of most healthy humans. However, under certain environmental conditions, it can become a life-threatening pathogen. The shift from commensal organism to pathogen is often correlated with the capacity to undergo morphogenesis. Indeed, under certain conditions, including growth at ambient temperature, the presence of serum or N-acetylglucosamine, neutral pH, and nutrient starvation, C. albicans can undergo reversible transitions from the yeast form to the mycelial form. This morphological plasticity reflects the interplay of various signal transduction pathways, either stimulating or repressing hyphal formation. In this review, we provide an overview of the different sensing and signaling pathways involved in the morphogenesis and pathogenesis of C. albicans. Where appropriate, we compare the analogous pathways/genes in Saccharomyces cerevisiae in an attempt to highlight the evolution of the different components of the two organisms. The downstream components of these pathways, some of which may be interesting antifungal targets, are also discussed.


Molecular Microbiology | 1999

A Saccharomyces cerevisiae G-protein coupled receptor, Gpr1, is specifically required for glucose activation of the cAMP pathway during the transition to growth on glucose

L. Kraakman; Katleen Lemaire; Pingsheng Ma; Aloys Teunissen; M. Donaton; Patrick Van Dijck; Joris Winderickx; Johannes H. de Winde; Johan M. Thevelein

In the yeast Saccharomyces cerevisiae the accumulation of cAMP is controlled by an elaborate pathway. Only two triggers of the Ras adenylate cyclase pathway are known. Intracellular acidification induces a Ras‐mediated long‐lasting cAMP increase. Addition of glucose to cells grown on a non‐fermentable carbon source or to stationary‐phase cells triggers a transient burst in the intracellular cAMP level. This glucose‐induced cAMP signal is dependent on the G alpha‐protein Gpa2. We show that the G‐protein coupled receptor (GPCR) Gpr1 interacts with Gpa2 and is required for stimulation of cAMP synthesis by glucose. Gpr1 displays sequence homology to GPCRs of higher organisms. The absence of Gpr1 is rescued by the constitutively activated Gpa2Val‐132 allele. In addition, we isolated a mutant allele of GPR1, named fil2, in a screen for mutants deficient in glucose‐induced loss of heat resistance, which is consistent with its lack of glucose‐induced cAMP activation. Apparently, Gpr1 together with Gpa2 constitute a glucose‐sensing system for activation of the cAMP pathway. Deletion of Gpr1 and/or Gpa2 affected cAPK‐controlled features (levels of trehalose, glycogen, heat resistance, expression of STRE‐controlled genes and ribosomal protein genes) specifically during the transition to growth on glucose. Hence, an alternative glucose‐sensing system must signal glucose availability for the Sch9‐dependent pathway during growth on glucose. This appears to be the first example of a GPCR system activated by a nutrient in eukaryotic cells. Hence, a subfamily of GPCRs might be involved in nutrient sensing.


Nature Genetics | 2006

Disrupted function and axonal distribution of mutant tyrosyl-tRNA synthetase in dominant intermediate Charcot-Marie-Tooth neuropathy

Albena Jordanova; Joy Irobi; Florian P. Thomas; Patrick Van Dijck; Kris Meerschaert; Maarten Dewil; Ines Dierick; An Jacobs; Els De Vriendt; Velina Guergueltcheva; Chitharanjan V Rao; Ivailo Tournev; Francisco de Assis Aquino Gondim; Marc D'Hooghe; Veerle Van Gerwen; Patrick Callaerts; Ludo Van Den Bosch; Jean-Pierre Timmermans; Wim Robberecht; Jan Gettemans; Johan M. Thevelein; Ivo Kremensky; Vincent Timmerman

Charcot-Marie-Tooth (CMT) neuropathies are common disorders of the peripheral nervous system caused by demyelination or axonal degeneration, or a combination of both features. We previously assigned the locus for autosomal dominant intermediate CMT neuropathy type C (DI-CMTC) to chromosome 1p34-p35. Here we identify two heterozygous missense mutations (G41R and E196K) and one de novo deletion (153–156delVKQV) in tyrosyl-tRNA synthetase (YARS) in three unrelated families affected with DI-CMTC. Biochemical experiments and genetic complementation in yeast show partial loss of aminoacylation activity of the mutant proteins, and mutations in YARS, or in its yeast ortholog TYS1, reduce yeast growth. YARS localizes to axonal termini in differentiating primary motor neuron and neuroblastoma cultures. This specific distribution is significantly reduced in cells expressing mutant YARS proteins. YARS is the second aminoacyl-tRNA synthetase found to be involved in CMT, thereby linking protein-synthesizing complexes with neurodegeneration.


Plant Physiology | 2004

The Arabidopsis trehalose-6-P synthase AtTPS1 gene is a regulator of glucose, abscisic acid, and stress signaling

Nelson Avonce; Barbara Leyman; José Oscar Mascorro-Gallardo; Patrick Van Dijck; Johan M. Thevelein; Gabriel Iturriaga

In Arabidopsis (Arabidopsis thaliana), trehalose is present at almost undetectable levels, excluding its role as an osmoprotectant. Here, we report that overexpression of AtTPS1 in Arabidopsis using the 35S promoter led to a small increase in trehalose and trehalose-6-P levels. In spite of this, transgenic plants displayed a dehydration tolerance phenotype without any visible morphological alterations, except for delayed flowering. Moreover, seedlings overexpressing AtTPS1 exhibited glucose (Glc)- and abscisic acid (ABA)-insensitive phenotypes. Transgenic seedlings germinated on Glc were visibly larger with green well-expanded cotyledonary leaves and fully developed roots, in contrast with wild-type seedlings showing growth retardation and absence of photosynthetic tissue. An ABA dose-response experiment revealed a higher germination rate for transgenic plants overexpressing AtTPS1 showing insensitive germination kinetics at 2.5 μm ABA. Interestingly, germination in the presence of Glc did not trigger an increase in ABA content in plants overexpressing AtTPS1. Expression analysis by quantitative reverse transcription-PCR in transgenic plants showed up-regulation of the ABI4 and CAB1 genes. In the presence of Glc, CAB1 expression remained high, whereas ABI4, HXK1, and ApL3 levels were down-regulated in the AtTPS1-overexpressing lines. Analysis of AtTPS1 expression in HXK1-antisense or HXK1-sense transgenic lines suggests the possible involvement of AtTPS1 in the hexokinase-dependent Glc-signaling pathway. These data strongly suggest that AtTPS1 has a pivotal role in the regulation of Glc and ABA signaling during vegetative development.


Trends in Plant Science | 2001

An unexpected plethora of trehalose biosynthesis genes in Arabidopsis thaliana

Barbara Leyman; Patrick Van Dijck; Johan M. Thevelein

Trehalose accumulation has been documented in many organisms, such as bacteria and fungi, where it serves a storage and stress-protection role. Although conspicuously absent in most plants, trehalose biosynthesis genes were discovered recently in higher plants. We have uncovered a family of 11 TPS genes in Arabidopsis thaliana, one of which encodes a trehalose-6-phosphate (Tre6P) synthase, and a subfamily of which might encode the still elusive Tre6P phosphatases. A regulatory role in carbon metabolism is likely but might not be restricted to the TPS control of hexokinase activity as documented for yeast. Incompatibility between high trehalose levels and chaperone-assisted protein folding might be a reason why plants have evolved to accumulate some alternative stress-protection compounds to trehalose.


Journal of Biological Chemistry | 2006

The Saccharomyces cerevisiae EHT1 and EEB1 Genes Encode Novel Enzymes with Medium-chain Fatty Acid Ethyl Ester Synthesis and Hydrolysis Capacity

Sofie Saerens; Kevin J. Verstrepen; Stijn D. M. Van Laere; Arnout Voet; Patrick Van Dijck; Freddy R. Delvaux; Johan M. Thevelein

Fatty acid ethyl esters are secondary metabolites produced by Saccharomyces cerevisiae and many other fungi. Their natural physiological role is not known but in fermentations of alcoholic beverages and other food products they play a key role as flavor compounds. Information about the metabolic pathways and enzymology of fatty acid ethyl ester biosynthesis, however, is very limited. In this work, we have investigated the role of a three-member S. cerevisiae gene family with moderately divergent sequences (YBR177c/EHT1, YPL095c/EEB1, and YMR210w). We demonstrate that two family members encode an acyl-coenzymeA:ethanol O-acyltransferase, an enzyme required for the synthesis of medium-chain fatty acid ethyl esters. Deletion of either one or both of these genes resulted in severely reduced medium-chain fatty acid ethyl ester production. Purified glutathione S-transferase-tagged Eht1 and Eeb1 proteins both exhibited acyl-coenzymeA:ethanol O-acyltransferase activity in vitro, as well as esterase activity. Overexpression of Eht1 and Eeb1 did not enhance medium-chain fatty acid ethyl ester content, which is probably due to the bifunctional synthesis and hydrolysis activity. Molecular modeling of Eht1 and Eeb1 revealed the presence of a α/β-hydrolase fold, which is generally present in the substrate-binding site of esterase enzymes. Hence, our results identify Eht1 and Eeb1 as novel acyl-coenzymeA:ethanol O-acyltransferases/esterases, whereas the third family member, Ymr210w, does not seem to play an important role in medium-chain fatty acid ethyl ester formation.


Plant Journal | 2014

Trehalose metabolism in plants

John E. Lunn; Ines Delorge; Carlos M. Figueroa; Patrick Van Dijck; Mark Stitt

Trehalose is a quantitatively important compatible solute and stress protectant in many organisms, including green algae and primitive plants. These functions have largely been replaced by sucrose in vascular plants, and trehalose metabolism has taken on new roles. Trehalose is a potential signal metabolite in plant interactions with pathogenic or symbiotic micro-organisms and herbivorous insects. It is also implicated in responses to cold and salinity, and in regulation of stomatal conductance and water-use efficiency. In plants, as in other eukaryotes and many prokaryotes, trehalose is synthesized via a phosphorylated intermediate, trehalose 6-phosphate (Tre6P). A meta-analysis revealed that the levels of Tre6P change in parallel with sucrose, which is the major product of photosynthesis and the main transport sugar in plants. We propose the existence of a bi-directional network, in which Tre6P is a signal of sucrose availability and acts to maintain sucrose concentrations within an appropriate range. Tre6P influences the relative amounts of sucrose and starch that accumulate in leaves during the day, and regulates the rate of starch degradation at night to match the demand for sucrose. Mutants in Tre6P metabolism have highly pleiotropic phenotypes, showing defects in embryogenesis, leaf growth, flowering, inflorescence branching and seed set. It has been proposed that Tre6P influences plant growth and development via inhibition of the SNF1-related protein kinase (SnRK1). However, current models conflict with some experimental data, and do not completely explain the pleiotropic phenotypes exhibited by mutants in Tre6P metabolism. Additional explanations for the diverse effects of alterations in Tre6P metabolism are discussed.


Plant Molecular Biology | 2007

Improved drought tolerance without undesired side effects in transgenic plants producing trehalose

Sazzad Karim; Henrik Aronsson; Henrik Ericson; Minna Pirhonen; Barbara Leyman; Björn Welin; Einar Mäntylä; E. Tapio Palva; Patrick Van Dijck; Kjell-Ove Holmström

Most organisms naturally accumulating trehalose upon stress produce the sugar in a two-step process by the action of the enzymes trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP). Transgenic plants overexpressing TPS have shown enhanced drought tolerance in spite of minute accumulation of trehalose, amounts believed to be too small to provide a protective function. However, overproduction of TPS in plants has also been found combined with pleiotropic growth aberrations. This paper describes three successful strategies to circumvent such growth defects without loosing the improved stress tolerance. First, we introduced into tobacco a double construct carrying the genes TPS1 and TPS2 (encoding TPP) from Saccharomyces cerevisiae. Both genes are regulated by an Arabidopsis RuBisCO promoter from gene AtRbcS1A giving constitutive production of both enzymes. The second strategy involved stress-induced expression by fusing the coding region of ScTPS1 downstream of the drought-inducible ArabidopsisAtRAB18 promoter. In transgenic tobacco plants harbouring genetic constructs with either ScTPS1 alone, or with ScTPS1 and ScTPS2 combined, trehalose biosynthesis was turned on only when the plants experienced stress. The third strategy involved the use of AtRbcS1A promoter together with a transit peptide in front of the coding sequence of ScTPS1, which directed the enzyme to the chloroplasts. This paper confirms that the enhanced drought tolerance depends on unknown ameliorated water retention as the initial water status is the same in control and transgenic plants and demonstrates the influence of expression of heterologous trehalose biosynthesis genes on Arabidopsis root development.


Trends in Microbiology | 2014

Molecular mechanisms of antimicrobial tolerance and resistance in bacterial and fungal biofilms

Heleen Van Acker; Patrick Van Dijck; Tom Coenye

The formation of microbial biofilms is an important reason for failure of antimicrobial therapy. However, the molecular mechanisms underlying the survival of biofilm cells are still not completely understood. In this review we discuss three mechanisms that play an important role in biofilm survival: (i) biofilm-specific protection against oxidative stress; (ii) biofilm-specific expression of efflux pumps; and (iii) protection provided by matrix polysaccharides. We demonstrate that these mechanisms are found both in bacterial and fungal biofilms and are often surprisingly similar between distantly related organisms. In addition, we give an overview of the data that suggests that these mechanisms may not be independent.


Nature Genetics | 2012

Heterozygous missense mutations in SMARCA2 cause Nicolaides-Baraitser syndrome

Jeroen Van Houdt; Beata Nowakowska; Sérgio B. de Sousa; Barbera D. C. van Schaik; Eve Seuntjens; Nelson Avonce; Alejandro Sifrim; Omar A. Abdul-Rahman; Marie Jose H. van den Boogaard; Armand Bottani; Marco Castori; Valérie Cormier-Daire; Matthew A. Deardorff; Isabel Filges; Alan Fryer; Jean Pierre Fryns; Simone Gana; Livia Garavelli; Gabriele Gillessen-Kaesbach; Bryan D. Hall; Denise Horn; Danny Huylebroeck; Jakub Klapecki; Małgorzata Krajewska-Walasek; Alma Kuechler; Saskia M. Maas; Kay D. MacDermot; Shane McKee; Alex Magee; Stella A. de Man

Nicolaides-Baraitser syndrome (NBS) is characterized by sparse hair, distinctive facial morphology, distal-limb anomalies and intellectual disability. We sequenced the exomes of ten individuals with NBS and identified heterozygous variants in SMARCA2 in eight of them. Extended molecular screening identified nonsynonymous SMARCA2 mutations in 36 of 44 individuals with NBS; these mutations were confirmed to be de novo when parental samples were available. SMARCA2 encodes the core catalytic unit of the SWI/SNF ATP-dependent chromatin remodeling complex that is involved in the regulation of gene transcription. The mutations cluster within sequences that encode ultra-conserved motifs in the catalytic ATPase region of the protein. These alterations likely do not impair SWI/SNF complex assembly but may be associated with disrupted ATPase activity. The identification of SMARCA2 mutations in humans provides insight into the function of the Snf2 helicase family.

Collaboration


Dive into the Patrick Van Dijck's collaboration.

Top Co-Authors

Avatar

Johan M. Thevelein

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Soňa Kucharíková

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Joris Winderickx

Catholic University of Leuven

View shared research outputs
Top Co-Authors

Avatar

Sona Kucharikova

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karin Thevissen

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Katrien Lagrou

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Pingsheng Ma

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Alessandro Fiori

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge