Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrick Veysset is active.

Publication


Featured researches published by Patrick Veysset.


Organic agriculture | 2011

Productive, environmental and economic performances assessments of organic and conventional suckler cattle farming systems

Patrick Veysset; Michel Lherm; Didier Bébin

Conversion to OF was simulated for four specialized suckler-beef systems by coupling an economic optimization model (“Opt’INRA”) with a model assessing non-renewable energy (NRE) consumption and greenhouse gas (GHG) emissions (“PLANETE”). After adaptation of the production system, and based on average prices over 2004–2008, we analyzed the productive, environmental and economic impacts of the conversion process. The ban on chemical fertilizers led to a drop in farm area productivity. For these specialized farms, meat production decreased by 18% to 37% depending on initial level of intensification. The reduced use of inputs results in a 23% to 45% drop in NRE consumption/ha, 5–20% of which is a drop in NRE per ton of live weight produced. Its methane production makes cattle the biggest driver of GHG emissions. The shift to OF does not significantly affect gross GHG emissions per ton of live weight produced, but taking into account carbon sequestration in grasslands suggests net GHG emissions could be lower for OF systems. The lower productivity per hectare (less animals reared per hectares) allows a 26% to 34% reduction in net GHG emissions per hectare of farm area. Economically, the drop in productivity is not compensated by the gain in the meat selling price (+5% to +10%), gross farm product drops by 9% to 16%, and the lower use of inputs creates a strong −9% to −52% drop in operational costs. Farm income falls more than 20% (−7 to −46%).


Animal | 2015

Productivity and technical efficiency of suckler beef production systems: trends for the period 1990 to 2012

Patrick Veysset; Michel Lherm; M. Roulenc; C. Troquier; Didier Bébin

Over the past 23 years (1990 to 2012), French beef cattle farms have expanded in size and increased labour productivity by over 60%, chiefly, though not exclusively, through capital intensification (labour-capital substitution) and simplifying herd feeding practices (more concentrates used). The technical efficiency of beef sector production systems, as measured by the ratio of the volume value (in constant euros) of farm output excluding aids to volume of intermediate consumption, has fallen by nearly 20% while income per worker has held stable thanks to subsidies and the labour productivity gains made. This aggregate technical efficiency of beef cattle systems is positively correlated to feed self-sufficiency, which is in turn negatively correlated to farm and herd size. While volume of farm output per hectare of agricultural area has not changed, forage feed self-sufficiency decreased by 6 percentage points. The continual increase in farm size and labour productivity has come at a cost of lower production-system efficiency - a loss of technical efficiency that 20 years of genetic, technical, technological and knowledge-driven progress has barely managed to offset.


Advances in Animal Biosciences | 2014

Origin, quantities and fate of nitrogen flows associated with animal production

Luc Delaby; Jean-Yves Dourmad; Fabrice Béline; Philippe Lescoat; Philippe Faverdin; Jean-Louis Fiorelli; Francoise Vertes; Patrick Veysset; Thierry Morvan; Virginie Parnaudeau; Patrick Durand; Philippe Rochette; Jean-Louis Peyraud

The nitrogen efficiency is the ratio between the output of nitrogen in the animal products and the input required for the livestock production. This ratio is a driver of the economic profitability and can be calculated at various levels of the production system: animal, field or farm. Calculated at the scale of the animal, it is generally low with less than half-ingested nitrogen remaining in the milk, the eggs or the meat in the form of proteins; the major part of the nitrogen being rejected in the environment. Significant gains were achieved in the past via the genetic improvement and the adjustment of feed supply. At the farm level, the efficiency increases to 45% to 50%, thanks to the recycling of animal excreta as fertilisers. From excretion to land application of manure, the losses of nitrogen are very variable depending on the animal species and the manure management system. Considering the risks of pollution swapping, all management and handling steps need to be considered. Collective initiatives or local rules on agricultural practices allow new opportunities to restore nitrogen balances on local territory.


Australian Journal of Agricultural and Resource Economics | 2018

Three decades of productivity change in French beef production: a Färe-Primont index decomposition

K Hervé Dakpo; Philippe Jeanneaux; Laure Latruffe; Claire Mosnier; Patrick Veysset

The Fare‐Primont index is used to evaluate total factor productivity (TFP) change and its components for a sample of French suckler cow farms in grassland areas in 1985–2014. The results reveal an increase in TFP of 6.6 per cent over the whole observation period, with technological progress being the major source of productivity growth. Meanwhile, efficiency decreased. Farms experienced great technological progress from 1991 to 2000. From a methodological point of view, the comparison with results obtained with Malmquist indexes shows similar trends but different magnitudes, with the Malmquist index overestimating the TFP and technological changes compared to the Fare‐Primont index. In addition, the use of a sequential approach that restricts technological change to being positive or null allows for the precise calculation of technology changes, disregarding the effects of external conditions that are captured in efficiency changes. Finally, the estimation of full dimensional efficient facets (FDEFs) that guarantees the positivity of all shadow prices used to assess the mix efficiency component of TFP change is promising.


Archive | 2013

Converting Suckler Cattle Farming Systems to Organic Farming: A Method to Assess the Productive, Environmental and Economic Impacts

Patrick Veysset; Michel Lherm; Didier Bébin

This chapter proposes a method for assessing the farming system adaptations required in converting to organic farming (OF) in three beef production systems employed in the Charolais area. The conversion to OF was simulated by coupling an economic optimisation model (“Opt’INRA”) with a model assessing non-renewable energy (NRE) consumption and greenhouse gas emissions (“PLANETE”). After adaptation of the production system, meat production decreased by 19–37%, depending on the initial level of intensification. The reduced use of inputs results in a 23–45% drop in non-renewable energy consumption per hectare and a 5–16% drop per ton of live weight produced. The shift to OF does significantly not affect gross GHG emissions per ton of live weight produced, but, taking into account carbon sequestration in grasslands, net GHG emissions could be lower for OF systems. Economically, the drop in productivity is not compensated by the gain in the meat selling price (+5% to +10%), gross farm product drops by 9–16%, and the lower use of inputs entails a strong drop in operational costs: −9% to −52%. Farm income falls more than 20% (−7% to −46%).


Agricultural Systems | 2010

Energy consumption, greenhouse gas emissions and economic performance assessments in French Charolais suckler cattle farms: Model-based analysis and forecasts

Patrick Veysset; Michel Lherm; Didier Bébin


Agricultural Systems | 2005

Adaptation to Agenda 2000 (CAP reform) and optimisation of the farming system of French suckler cattle farms in the Charolais area: a model-based study

Patrick Veysset; Didier Bébin; Michel Lherm


European Review of Agricultural Economics | 2005

Joint production under uncertainty and multifunctionality of agriculture: policy considerations and applied analysis

Peter Havlik; Patrick Veysset; Jean-Marie Boisson; Michel Lherm; Florence Jacquet


Agriculture, Ecosystems & Environment | 2014

Variability in greenhouse gas emissions, fossil energy consumption and farm economics in suckler beef production in 59 French farms

Patrick Veysset; Michel Lherm; Didier Bébin; M. Roulenc; Marc Benoit


Animal | 2014

Mixed crop-livestock farming systems: a sustainable way to produce beef? Commercial farms results, questions and perspectives.

Patrick Veysset; Michel Lherm; Didier Bébin; M. Roulenc

Collaboration


Dive into the Patrick Veysset's collaboration.

Top Co-Authors

Avatar

Michel Lherm

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Didier Bébin

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stéphane Ingrand

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Jean-Louis Fiorelli

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Luc Delaby

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Patrick Durand

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Philippe Faverdin

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Thierry Morvan

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Virginie Parnaudeau

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge