Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrick Vignaud is active.

Publication


Featured researches published by Patrick Vignaud.


Nature | 2002

A new hominid from the Upper Miocene of Chad, Central Africa

Michel Brunet; Franck Guy; David Pilbeam; Hassane Taisso Mackaye; Andossa Likius; Alain Beauvilain; Jean-Renaud Boisserie; Louis de Bonis; Yves Coppens; Jean Dejax; Denis Geraads; Thomas Lehmann; Fabrice Lihoreau; Antoine Louchart; Adoum Mahamat; Gildas Merceron; Guy Mouchelin; Olga Otero; Pablo Pelaez Campomanes; Marcia S. Ponce de León; Jean-Claude Rage; P. Tassy; Patrick Vignaud; Laurent Viriot; Antoine Zazzo; Christoph P. E. Zollikofer; E. Bataillon; Guttierez Abascal

The search for the earliest fossil evidence of the human lineage has been concentrated in East Africa. Here we report the discovery of six hominid specimens from Chad, central Africa, 2,500 km from the East African Rift Valley. The fossils include a nearly complete cranium and fragmentary lower jaws. The associated fauna suggest the fossils are between 6 and 7 million years old. The fossils display a unique mosaic of primitive and derived characters, and constitute a new genus and species of hominid. The distance from the Rift Valley, and the great antiquity of the fossils, suggest that the earliest members of the hominid clade were more widely distributed than has been thought, and that the divergence between the human and chimpanzee lineages was earlier than indicated by most molecular studies.


Nature | 2002

Geology and palaeontology of the Upper Miocene Toros-Menalla hominid locality, Chad

Patrick Vignaud; Philippe Duringer; Hassane Taisso Mackaye; Andossa Likius; Cécile Blondel; Jean-Renaud Boisserie; Louis de Bonis; Véra Eisenmann; Marie-Esther Etienne; Denis Geraads; Franck Guy; Thomas Lehmann; Fabrice Lihoreau; Nieves Lopez-Martinez; Cécile Mourer-Chauviré; Olga Otero; Jean-Claude Rage; Mathieu Schuster; Laurent Viriot; Antoine Zazzo; Michel Brunet

All six known specimens of the early hominid Sahelanthropus tchadensis come from Toros-Menalla site 266 (TM 266), a single locality in the Djurab Desert, northern Chad, central Africa. Here we present a preliminary analysis of the palaeontological and palaeoecological context of these finds. The rich fauna from TM 266 includes a significant aquatic component such as fish, crocodiles and amphibious mammals, alongside animals associated with gallery forest and savannah, such as primates, rodents, elephants, equids and bovids. The fauna suggests a biochronological age between 6 and 7 million years. Taken together with the sedimentological evidence, the fauna suggests that S. tchadensis lived close to a lake, but not far from a sandy desert, perhaps the oldest record of desert conditions in the Neogene of northern central Africa.


Nature | 2005

Virtual cranial reconstruction of Sahelanthropus tchadensis

Christoph P. E. Zollikofer; Marcia S. Ponce de León; Daniel E. Lieberman; Franck Guy; David Pilbeam; Andossa Likius; Hassane Taisso Mackaye; Patrick Vignaud; Michel Brunet

Previous research in Chad at the Toros-Menalla 266 fossiliferous locality (about 7 million years old) uncovered a nearly complete cranium (TM 266-01-60-1), three mandibular fragments and several isolated teeth attributed to Sahelanthropus tchadensis . Of this material, the cranium is especially important for testing hypotheses about the systematics and behavioural characteristics of this species, but is partly distorted from fracturing, displacement and plastic deformation. Here we present a detailed virtual reconstruction of the TM 266 cranium that corrects these distortions. The reconstruction confirms that S. tchadensis is a hominid and is not more closely related to the African great apes. Analysis of the basicranium further indicates that S. tchadensis might have been an upright biped, suggesting that bipedalism was present in the earliest known hominids, and probably arose soon after the divergence of the chimpanzee and human lineages.


Nature | 2005

New material of the earliest hominid from the Upper Miocene of Chad

Michel Brunet; Franck Guy; David Pilbeam; Daniel E. Lieberman; Andossa Likius; Hassane Taisso Mackaye; Marcia S. Ponce de León; Christoph P. E. Zollikofer; Patrick Vignaud

Discoveries in Chad by the Mission Paléoanthropologique Franco-Tchadienne have substantially changed our understanding of early human evolution in Africa. In particular, the TM 266 locality in the Toros-Menalla fossiliferous area yielded a nearly complete cranium (TM 266-01-60-1), a mandible, and several isolated teeth assigned to Sahelanthropus tchadensis and biochronologically dated to the late Miocene epoch (about 7 million years ago). Despite the relative completeness of the TM 266 cranium, there has been some controversy about its morphology and its status in the hominid clade. Here we describe new dental and mandibular specimens from three Toros-Menalla (Chad) fossiliferous localities (TM 247, TM 266 and TM 292) of the same age. This new material, including a lower canine consistent with a non-honing C/P3 complex, post-canine teeth with primitive root morphology and intermediate radial enamel thickness, is attributed to S. tchadensis. It expands the hypodigm of the species and provides additional anatomical characters that confirm the morphological differences between S. tchadensis and African apes. S. tchadensis presents several key derived features consistent with its position in the hominid clade close to the last common ancestor of chimpanzees and humans.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Cosmogenic nuclide dating of Sahelanthropus tchadensis and Australopithecus bahrelghazali: Mio-Pliocene hominids from Chad

Anne-Elisabeth Lebatard; Didier L. Bourles; Philippe Duringer; Marc Jolivet; Régis Braucher; Julien Carcaillet; Mathieu Schuster; Nicolas Arnaud; Patrick Monié; Fabrice Lihoreau; Andossa Likius; Hassan Taisso Mackaye; Patrick Vignaud; Michel Brunet

Ages were determined at two hominid localities from the Chad Basin in the Djurab Desert (Northern Chad). In the Koro Toro fossiliferous area, KT 12 locality (16°00′N, 18°53′E) was the site of discovery of Australopithecus bahrelghazali (Abel) and in the Toros-Menalla fossiliferous area, TM 266 locality (16°15′N, 17°29′E) was the site of discovery of Sahelanthropus tchadensis (Toumaï). At both localities, the evolutive degree of the associated fossil mammal assemblages allowed a biochronological estimation of the hominid remains: early Pliocene (3–3.5 Ma) at KT 12 and late Miocene (≈7 Ma) at TM 266. Atmospheric 10Be, a cosmogenic nuclide, was used to quasicontinuously date these sedimentary units. The authigenic 10Be/9Be dating of a pelite relic within the sedimentary level containing Abel yields an age of 3.58 ± 0.27 Ma that points to the contemporaneity of Australopithecus bahrelghazali (Abel) with Australopithecus afarensis (Lucy). The 28 10Be/9Be ages obtained within the anthracotheriid unit containing Toumaï bracket, by absolute dating, the age of Sahelanthropus tchadensis to lie between 6.8 and 7.2 Ma. This chronological constraint is an important cornerstone both for establishing the earliest stages of hominid evolution and for new calibrations of the molecular clock.


Paleobiology | 2000

Herbivore paleodiet and paleoenvironmental changes in Chad during the Pliocene using stable isotope ratios of tooth enamel carbonate

Antoine Zazzo; Hervé Bocherens; Michel Brunet; Alain Beauvilain; Daniel Billiou; Hassane Taisso Mackaye; Patrick Vignaud; André Mariotti

Abstract Chad is a key region for understanding early hominid geographic expansion in relation to late Miocene and Pliocene environmental changes, owing to its location 2500 km west from the Rift Valley and to the occurrence of sites ranging in age from about 6 to 3 Ma, some of which yield fossil hominids. To reconstruct changes in herbivore paleodiet and therefore changes in the paleoenvironment, we measured the carbon and oxygen isotope composition of 80 tooth-enamel samples from three time horizons for nine families of Perissodactyla, Proboscidea, and Artiodactyla. The absence of significant alteration of in vivo isotopic signatures can be determined for carbon, thus allowing paleodietary and paleoenvironmental interpretations to be made. While the results generally confirm previous dietary hypotheses, mostly based on relative crown height, there are some notable surprises. The main discrepancies are found among low-crowned proboscideans (e.g., Anancus) and high-crowned rhinocerotids (Ceratotherium). Both species were more opportunistic feeders than it is usually believed. This result confirms that ancient feeding ecology cannot always be inferred from dental morphology or extant relatives. There is an increase in the average carbon isotope composition of tooth enamel from the oldest unit to the youngest, suggesting that the environment became richer in C4 plants with time. In turn, more C4 plants indicate an opening of the plant cover during this period. This increase in carbon isotope composition is also recorded within genera such as Nyanzachoerus, Ceratotherium, and Hexaprotodon, indicating a change from a C3-dominated to a C4-dominated diet over time. It appears that, unlike other middle Pliocene hominid sites in eastern and southern Africa, this part of Chad was characterized by very open conditions and that savanna-like grasslands were already dominant when hominids were present in the area.


Proceedings of the National Academy of Sciences of the United States of America | 2012

From the Cover: Isotopic evidence for an early shift to C4 resources by Pliocene hominins in Chad

Julia A. Lee-Thorp; Andossa Likius; Hassane Taisso Mackaye; Patrick Vignaud; Matt Sponheimer; Michel Brunet

Foods derived from C4 plants were important in the dietary ecology of early Pleistocene hominins in southern and eastern Africa, but the origins and geographic variability of this relationship remain unknown. Carbon isotope data show that Australopithecus bahrelghazali individuals from Koro Toro in Chad are significantly enriched in 13C, indicating a dependence on C4 resources. As these sites are over 3 million years in age, the results extend the pattern of C4 dependence seen in Paranthropus boisei in East Africa by more than 1.5 million years. The Koro Toro hominin fossils were found in argillaceous sandstone levels along with abundant grazing and aquatic faunal elements that, in combination, indicate the presence of open to wooded grasslands and stream channels associated with a greatly enlarged Lake Chad. In such an environment, the most abundant C4 plant resources available to A. bahrelghazali were grasses and sedges, neither of which is usually considered as standard great ape fare. The results suggest an early and fundamental shift in hominin dietary ecology that facilitated the exploitation of new habitats.


Comptes Rendus De L Academie Des Sciences Serie Ii Fascicule A-sciences De La Terre Et Des Planetes | 1998

Tchad: Découverte d'une faune de mammifères du pliocène inférieur

Michel Brunet; Alain Beauvilain; Denis Geraads; Franck Guy; Mahamat Kasser; Hassane Taisso Mackaye; Laura MacLatchy; Guy Mouchelin; Jean Sudre; Patrick Vignaud

Abstract In Northern Chad, the site of Kolle in the Djourab erg has yielded a vertebrate fauna including 21 species, 14 of which are Mammals. This fauna provides evidence of a mosaic of environments: fresh-water, woodlands, grasslands. In spite of possible taphonomic or collecting bias, and of some endemicity, this fauna allows us to propose an age in the range 5-4 My.


Journal of Human Evolution | 2008

Symphyseal shape variation in extant and fossil hominoids, and the symphysis of Australopithecus bahrelghazali

Franck Guy; Hassane-Taïsso Mackaye; Andossa Likius; Patrick Vignaud; Matthieu Schmittbuhl; Michel Brunet

The holotype of the species Australopithecus bahrelghazali is a mandibular fragment preserving left C-P(4) and right I(2)-P(4). One of the key features of the A. bahrelghazali mandible is its sagittally and transversally flat anterior region associated with a vertical, bulbous symphysis that is assumed to differ morphologically from the classic, more apelike eastern australopith morphology with its sloping symphysis, developed transverse tori, and distinct genioglossal fossa. Yet, close similarity has been suggested between A. bahrelghazali and A. afarensis. To date, no metrical comparison of the symphyseal morphology of east and west African australopiths has been performed. For the selected characters, this study attempts to test the following null hypothesis: A. bahrelghazali does not present significant differences from A. afarensis (i.e., A. bahrelghazali vs. A. afarensis variation does not depart from expected intraspecific variation for hominoid species). Analysis of the mandibular symphysis is difficult to undertake using conventional linear variables since few landmarks are available to make a precise quantitative assessment of its morphology. In addition, while a few studies have used outline-based techniques of analysis to address symphyseal shape variation, none has integrated data on early hominins. We present here a detailed comparative study of variation in the symphyseal outline of A. bahrelghazali and A. afarensis based on a quantitative characterization by elliptic Fourier coefficients. Original data on symphyseal variation in Pliocene hominins are provided and discussed within a comparative framework of extant and fossil hominoid representatives. We evaluate the relevance of our quantitative data describing the shape of the symphysis for discriminating hominoid taxa, and test for differences in symphyseal shape between A. bahrelghazali and A. afarensis. Elliptic Fourier coefficients appear to be well-suited descriptors for depicting symphyseal variation within hominoids. Our results confirm that symphyseal shape is a good indicator of taxonomic affinity within hominoids, enabling a clear distinction between great apes, early hominins, and modern humans. Furthermore, our results substantiate the unusual pattern of the A. bahrelghazali symphyses compared to A. afarensis and support the specific status of the west African australopith.


Earth and Planetary Science Letters | 2010

Application of the authigenic 10Be/9Be dating method to continental sediments: Reconstruction of the Mio-Pleistocene sedimentary sequence in the early hominid fossiliferous areas of the northern Chad Basin

Anne-Elisabeth Lebatard; Didier Bourlès; Régis Braucher; Maurice Arnold; Philippe Duringer; Marc Jolivet; Abderamane Moussa; Pierre Deschamps; Claude Roquin; Julien Carcaillet; Mathieu Schuster; Fabrice Lihoreau; Andossa Likius; Hassan Taisso Mackaye; Patrick Vignaud; Michel Brunet

The concentrations of atmospheric cosmogenic 10Be normalized to the solubilized fraction of its stable isotope 9Be have been measured in the authigenic phase leached from silicated continental sediments deposited since the upper Miocene in the northern Chad Basin. This method is validated by the systematic congruence with the biochronological estimations based on the fossil mammal evolutive degree of faunal assemblages. The fifty-five authigenic 10Be/9Be ages obtained along 12 logs distributed along two West-East cross sections that encompass best representative Mio-Pliocene outcrops including paleontological sites show a systematic stratigraphic decrease when considering all studied sedimentary facies extending from the Pleistocene up to 8 Ma and allow performing geologic correlations otherwise impossible in the studied area. The resulting global sequence evidences and temporally specifies the succession of the main paleoenvironments that have developed in this region since the Miocene. Under the special conditions encountered in the northern Chad Basin, this study demonstrates that the authigenic 10Be/9Be ratio may be used as a dating tool of continental sedimentary deposits from 1 to 8 Ma. The half-life of 10Be theoretically allowing dating up to 14 Ma, it may have fundamental implications on important field research such as paleoclimatology and, through the dating of fossiliferous deposits in paleontology and paleoanthropology.

Collaboration


Dive into the Patrick Vignaud's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Franck Guy

University of Poitiers

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olga Otero

University of Poitiers

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stéphane Peigné

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge