Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrick W. Mantyh is active.

Publication


Featured researches published by Patrick W. Mantyh.


Neuron | 2007

The Cerebral Signature for Pain Perception and Its Modulation

Irene Tracey; Patrick W. Mantyh

Our understanding of the neural correlates of pain perception in humans has increased significantly since the advent of neuroimaging. Relating neural activity changes to the varied pain experiences has led to an increased awareness of how factors (e.g., cognition, emotion, context, injury) can separately influence pain perception. Tying this body of knowledge in humans to work in animal models of pain provides an opportunity to determine common features that reliably contribute to pain perception and its modulation. One key system that underpins the ability to change pain intensity is the brainstems descending modulatory network with its pro- and antinociceptive components. We discuss not only the latest data describing the cerebral signature of pain and its modulation in humans, but also suggest that the brainstem plays a pivotal role in gating the degree of nociceptive transmission so that the resultant pain experienced is appropriate for the particular situation of the individual.


Nature Reviews Neuroscience | 2001

The molecular dynamics of pain control

Stephen P. Hunt; Patrick W. Mantyh

Pain is necessary for survival, but persistent pain can result in anxiety, depression and a reduction in the quality of life. The discriminative and affective qualities of pain are both thought to be regulated in an activity-dependent fashion. Recent studies have identified cells and molecules that regulate pain sensitivity and the parallel pathways that distribute nociceptive information to limbic or sensory areas of the forebrain. Here, we emphasize the cellular and neurobiological consequences of pain, especially those that are involved in the generation and maintenance of chronic pain. These new insights into pain processing will significantly alter our approach to pain control and the development of new analgesics.


Nature | 1998

Primary afferent tachykinins are required to experience moderate to intense pain

Yu-Qing Cao; Patrick W. Mantyh; Elaine J. Carlson; Anne Marie Gillespie; Charles J. Epstein; Allan I. Basbaum

The excitatory neurotransmitter glutamate coexists with the peptide known as substance P in primary afferents that respond to painful stimulation. Because blockers of glutamate receptors reliably reduce pain behaviour, it is assumed that ‘pain’ messages are mediated by glutamate action on dorsal horn neurons. The contribution of substance P, however, is still unclear. We have now disrupted the mouse preprotachykinin A gene (PPT-A), which encodes substance P and a related tachykinin, neurokinin A (ref. 5). We find that although the behavioural response to mildly painful stimuli is intact in these mice, the response to moderate to intense pain is significantly reduced. Neurogenic inflammation, which results from peripheral release of substance P and neurokinin A (ref. 6), is almost absent in the mutant mice. We conclude that the release of tachykinins from primary afferent pain-sensing receptors (nociceptors) is required to produce moderate to intense pain.


Neuroscience | 2000

Murine models of inflammatory, neuropathic and cancer pain each generates a unique set of neurochemical changes in the spinal cord and sensory neurons.

Prisca Honore; Scott D. Rogers; Matthew J. Schwei; J. L. Salak-Johnson; Nancy M. Luger; Mary Ann C. Sabino; Denis R. Clohisy; Patrick W. Mantyh

The aim of this investigation was to determine whether murine models of inflammatory, neuropathic and cancer pain are each characterized by a unique set of neurochemical changes in the spinal cord and sensory neurons. All models were generated in C3H/HeJ mice and hyperalgesia and allodynia behaviorally characterized. A variety of neurochemical markers that have been implicated in the generation and maintenance of chronic pain were then examined in spinal cord and primary afferent neurons.Three days after injection of complete Freunds adjuvant into the hindpaw (a model of persistent inflammatory pain) increases in substance P, calcitonin gene-related peptide, protein kinase C gamma, and substance P receptor were observed in the spinal cord. Following sciatic nerve transection or L5 spinal nerve ligation (a model of persistent neuropathic pain) significant decreases in substance P and calcitonin gene-related peptide and increases in galanin and neuropeptide Y were observed in both primary afferent neurons and the spinal cord. In contrast, in a model of cancer pain induced by injection of osteolytic sarcoma cells into the femur, there were no detectable changes in any of these markers in either primary afferent neurons or the spinal cord. However, in this cancer-pain model, changes including massive astrocyte hypertrophy without neuronal loss, increase in the neuronal expression of c-Fos, and increase in the number of dynorphin-immunoreactive neurons were observed in the spinal cord, ipsilateral to the limb with cancer. These results indicate that a unique set of neurochemical changes occur with inflammatory, neuropathic and cancer pain in C3H/HeJ mice and further suggest that cancer induces a unique persistent pain state. Determining whether these neurochemical changes are involved in the generation and maintenance of each type of persistent pain may provide insight into the mechanisms that underlie each of these pain states.


Nature Medicine | 2000

Osteoprotegerin blocks bone cancer-induced skeletal destruction, skeletal pain and pain-related neurochemical reorganization of the spinal cord.

Prisca Honore; Nancy M. Luger; Mary Ann C. Sabino; Matthew J. Schwei; Scott D. Rogers; David B. Mach; Patrick F. O'keefe; Margaret L. Ramnaraine; Denis R. Clohisy; Patrick W. Mantyh

Bone cancer pain is common among cancer patients and can have a devastating effect on their quality of life. A chief problem in designing new therapies for bone cancer pain is that it is unclear what mechanisms drive this distinct pain condition. Here we show that osteoprotegerin, a secreted ‘decoy’ receptor that inhibits osteoclast activity, also blocks behaviors indicative of pain in mice with bone cancer. A substantial part of the actions of osteoprotegerin seems to result from inhibition of tumor-induced bone destruction that in turn inhibits the neurochemical changes in the spinal cord that are thought to be involved in the generation and maintenance of cancer pain. These results demonstrate that excessive tumor-induced bone destruction is involved in the generation of bone cancer pain and that osteoprotegerin may provide an effective treatment for this common human condition.


Neuroscience | 2002

Origins of skeletal pain: sensory and sympathetic innervation of the mouse femur

David B. Mach; Scott D. Rogers; Mary Ann C. Sabino; Nancy M. Luger; Matthew J. Schwei; James D. Pomonis; Cathy P. Keyser; Denis R. Clohisy; Douglas J. Adams; P. O'Leary; Patrick W. Mantyh

Although skeletal pain plays a major role in reducing the quality of life in patients suffering from osteoarthritis, Pagets disease, sickle cell anemia and bone cancer, little is known about the mechanisms that generate and maintain this pain. To define the peripheral fibers involved in transmitting and modulating skeletal pain, we used immunohistochemistry with antigen retrieval, confocal microscopy and three-dimensional image reconstruction of the bone to examine the sensory and sympathetic innervation of mineralized bone, bone marrow and periosteum of the normal mouse femur. Thinly myelinated and unmyelinated peptidergic sensory fibers were labeled with antibodies raised against calcitonin gene-related peptide (CGRP) and the unmyelinated, non-peptidergic sensory fibers were labeled with the isolectin B4 (Bandeira simplicifolia). Myelinated sensory fibers were labeled with an antibody raised against 200-kDa neurofilament H (clone RT-97). Sympathetic fibers were labeled with an antibody raised against tyrosine hydroxylase. CGRP, RT-97, and tyrosine hydroxylase immunoreactive fibers, but not isolectin B4 positive fibers, were present throughout the bone marrow, mineralized bone and the periosteum. While the periosteum is the most densely innervated tissue, when the total volume of each tissue is considered, the bone marrow receives the greatest total number of sensory and sympathetic fibers followed by mineralized bone and then periosteum. Understanding the sensory and sympathetic innervation of bone should provide a better understanding of the mechanisms that drive bone pain and aid in developing therapeutic strategies for treating skeletal pain.


The FASEB Journal | 1990

Diversity in mammalian tachykinin peptidergic neurons: multiple peptides, receptors, and regulatory mechanisms.

C J Helke; J E Krause; Patrick W. Mantyh; R Couture; Michael J. Bannon

The tachykinins comprise a family of closely related peptides that participate in the regulation of diverse biological processes. The tachykinin peptides substance P, neurokinin A, neurokinin A(3‐10), neuropeptide K, and neuropeptide γ are produced from a single preprotachykinin gene as a result of differential RNA splicing and differential posttranslational processing. Another tachykinin, neurokinin B, is produced from a separate preprotachykinin gene. These preprotachykinin mRNAs and peptide products are differentially distributed throughout the nervous system. Three distinct G protein‐coupled tachykinin receptors exist for these tachykinin peptides. The three receptors interact differentially with the tachykinin peptides and are uniquely distributed throughout the nervous system. The NK‐1 receptor preferentially interacts with substance P, the NK‐2 receptor prefers neurokinin A, neuropeptide K, and neuropeptide γ, and the NK‐3 receptor interacts best with neurokinin B. Examples of the roles of tachykinin peptidergic neuronal systems are taken from the spinal cord sensory system and the nigrostriatal extrapyramidal motor system. Analysis of the functional significance of multiple tachykinin peptide systems, receptor‐second messenger coupling mechanisms, and developmental and regulatory mechanisms underlying peptide mRNA and receptor expression represent areas of current and future investigation.—Helke, C. J.; Krause, J. E.; Mantyh, P. W.; Couture, R.; Bannon, M. J. Diversity in mammalian tachykinin peptidergic neurons: multiple peptides, receptors, and regulatory mechanisms. FASEB J. 4: 1606‐1615; 1990.


Journal of Neurochemistry | 1993

Aluminum, Iron, and Zinc Ions Promote Aggregation of Physiological Concentrations of β‐Amyloid Peptide

Patrick W. Mantyh; Joseph R. Ghilardi; Scott D. Rogers; Eric DeMaster; Clark J. Allen; Evelyn R. Stimson; John E. Maggio

Abstract: A major pathological feature of Alzheimers disease (AD) is the presence of a high density of amyloid plaques in the brain tissue of patients. The plaques are predominantly composed of human β‐amyloid peptide βA4, a 40‐mer whose neurotoxicity is related to its aggregation. Certain metals have been proposed as risk factors for AD, but the mechanism by which the metals may exert their effects is unclear. Radioiodinated human βA4 has been used to assess the effects of various metals on the aggregation of the peptide in dilute solution (10‐10M). In physiological buffers, 10‐3M calcium, cobalt, copper, manganese, magnesium, sodium, or potassium had no effect on the rate of βA4 aggregation. In sharp contrast, aluminum, iron, and zinc under the same conditions strongly promoted aggregation (rate enhancement of 100–1,000‐fold). The aggregation of βA4 induced by aluminum and iron is distinguishable from that induced by zinc in terms of rate, extent, pH and temperature dependence. These results suggest that high concentrations of certain metals may play a role in the pathogenesis of AD by promoting aggregation of βA4.


Nature Reviews Cancer | 2002

Molecular mechanisms of cancer pain.

Patrick W. Mantyh; Denis R. Clohisy; Martin Koltzenburg; Steve P. Hunt

Pain is the most disruptive influence on the quality of life of cancer patients. Although significant advances are being made in cancer treatment and diagnosis, the basic neurobiology of cancer pain is poorly understood. New insights into these mechanisms are now arising from animal models, and have the potential to fundamentally change the way that cancer pain is controlled.


The Journal of Neuroscience | 2005

Selective Blockade of the Capsaicin Receptor TRPV1 Attenuates Bone Cancer Pain

Joseph R. Ghilardi; Heidi Röhrich; Theodore H. Lindsay; Molly A. Sevcik; Matthew J. Schwei; Kyle G. Halvorson; Jeannie Poblete; Sandra R. Chaplan; Adrienne E. Dubin; Nicholas I. Carruthers; Devin M. Swanson; Michael A. Kuskowski; Christopher M. Flores; David Julius; Patrick W. Mantyh

Cancer colonization of bone leads to the activation of osteoclasts, thereby producing local tissue acidosis and bone resorption. This process may contribute to the generation of both ongoing and movement-evoked pain, resulting from the activation of sensory neurons that detect noxious stimuli (nociceptors). The capsaicin receptor TRPV1 (transient receptor potential vanilloid subtype 1) is a cation channel expressed by nociceptors that detects multiple pain-producing stimuli, including noxious heat and extracellular protons, raising the possibility that it is an important mediator of bone cancer pain via its capacity to detect osteoclast- and tumor-mediated tissue acidosis. Here, we show that TRPV1 is present on sensory neuron fibers that innervate the mouse femur and that, in an in vivo model of bone cancer pain, acute or chronic administration of a TRPV1 antagonist or disruption of the TRPV1 gene results in a significant attenuation of both ongoing and movement-evoked nocifensive behaviors. Administration of the antagonist had similar efficacy in reducing early, moderate, and severe pain-related responses, suggesting that TRPV1 may be a novel target for pharmacological treatment of chronic pain states associated with bone cancer metastasis.

Collaboration


Dive into the Patrick W. Mantyh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

John E. Maggio

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen P. Hunt

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge