Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrick Waters is active.

Publication


Featured researches published by Patrick Waters.


Neurology | 2015

International consensus diagnostic criteria for neuromyelitis optica spectrum disorders

Dean M. Wingerchuk; Brenda Banwell; Jeffrey L. Bennett; Philippe Cabre; William M. Carroll; Tanuja Chitnis; Jérôme De Seze; Kazuo Fujihara; Benjamin Greenberg; Anu Jacob; Sven Jarius; Marco Aurélio Lana-Peixoto; Michael Levy; Jack H. Simon; Silvia Tenembaum; Anthony Traboulsee; Patrick Waters; Kay E. Wellik; Brian G. Weinshenker

Neuromyelitis optica (NMO) is an inflammatory CNS syndrome distinct from multiple sclerosis (MS) that is associated with serum aquaporin-4 immunoglobulin G antibodies (AQP4-IgG). Prior NMO diagnostic criteria required optic nerve and spinal cord involvement but more restricted or more extensive CNS involvement may occur. The International Panel for NMO Diagnosis (IPND) was convened to develop revised diagnostic criteria using systematic literature reviews and electronic surveys to facilitate consensus. The new nomenclature defines the unifying term NMO spectrum disorders (NMOSD), which is stratified further by serologic testing (NMOSD with or without AQP4-IgG). The core clinical characteristics required for patients with NMOSD with AQP4-IgG include clinical syndromes or MRI findings related to optic nerve, spinal cord, area postrema, other brainstem, diencephalic, or cerebral presentations. More stringent clinical criteria, with additional neuroimaging findings, are required for diagnosis of NMOSD without AQP4-IgG or when serologic testing is unavailable. The IPND also proposed validation strategies and achieved consensus on pediatric NMOSD diagnosis and the concepts of monophasic NMOSD and opticospinal MS.


Brain | 2010

Antibodies to Kv1 potassium channel-complex proteins leucine-rich, glioma inactivated 1 protein and contactin-associated protein-2 in limbic encephalitis, Morvan’s syndrome and acquired neuromyotonia

Sarosh R. Irani; Sian K. Alexander; Patrick Waters; Kleopas A. Kleopa; Luigi Zuliani; Elior Peles; Camilla Buckley; Bethan Lang; Angela Vincent

Antibodies that immunoprecipitate 125I-α-dendrotoxin-labelled voltage-gated potassium channels extracted from mammalian brain tissue have been identified in patients with neuromyotonia, Morvan’s syndrome, limbic encephalitis and a few cases of adult-onset epilepsy. These conditions often improve following immunomodulatory therapies. However, the proportions of the different syndromes, the numbers with associated tumours and the relationships with potassium channel subunit antibody specificities have been unclear. We documented the clinical phenotype and tumour associations in 96 potassium channel antibody positive patients (titres >400 pM). Five had thymomas and one had an endometrial adenocarcinoma. To define the antibody specificities, we looked for binding of serum antibodies and their effects on potassium channel currents using human embryonic kidney cells expressing the potassium channel subunits. Surprisingly, only three of the patients had antibodies directed against the potassium channel subunits. By contrast, we found antibodies to three proteins that are complexed with 125I-α-dendrotoxin-labelled potassium channels in brain extracts: (i) contactin-associated protein-2 that is localized at the juxtaparanodes in myelinated axons; (ii) leucine-rich, glioma inactivated 1 protein that is most strongly expressed in the hippocampus; and (iii) Tag-1/contactin-2 that associates with contactin-associated protein-2. Antibodies to Kv1 subunits were found in three sera, to contactin-associated protein-2 in 19 sera, to leucine-rich, glioma inactivated 1 protein in 55 sera and to contactin-2 in five sera, four of which were also positive for the other antibodies. The remaining 18 sera were negative for potassium channel subunits and associated proteins by the methods employed. Of the 19 patients with contactin-associated protein-antibody-2, 10 had neuromyotonia or Morvan’s syndrome, compared with only 3 of the 55 leucine-rich, glioma inactivated 1 protein-antibody positive patients (P < 0.0001), who predominantly had limbic encephalitis. The responses to immunomodulatory therapies, defined by changes in modified Rankin scores, were good except in the patients with tumours, who all had contactin-associated-2 protein antibodies. This study confirms that the majority of patients with high potassium channel antibodies have limbic encephalitis without tumours. The identification of leucine-rich, glioma inactivated 1 protein and contactin-associated protein-2 as the major targets of potassium channel antibodies, and their associations with different clinical features, begins to explain the diversity of these syndromes; furthermore, detection of contactin-associated protein-2 antibodies should help identify the risk of an underlying tumour and a poor prognosis in future patients.


Brain | 2010

N-methyl-D-aspartate antibody encephalitis: temporal progression of clinical and paraclinical observations in a predominantly non-paraneoplastic disorder of both sexes.

Sarosh R. Irani; Katarzyna D Bera; Patrick Waters; Luigi Zuliani; Susan Maxwell; Michael S. Zandi; Manuel A. Friese; Ian Galea; Dimitri M. Kullmann; David Beeson; Bethan Lang; Christian G. Bien; Angela Vincent

Antibodies to the N-methyl-d-aspartate subtype of glutamate receptor have been associated with a newly-described encephalopathy that has been mainly identified in young females with ovarian tumours. However, the full clinical spectrum and treatment responses are not yet clear. We established a sensitive cell-based assay for detection of N-methyl-d-aspartate receptor antibodies in serum or cerebrospinal fluid, and a quantitative fluorescent immunoprecipitation assay for serial studies. Although there was marked intrathecal synthesis of N-methyl-d-aspartate receptor antibodies, the absolute levels of N-methyl-d-aspartate receptor antibodies were higher in serum than in cerebrospinal fluid. N-methyl-d-aspartate receptor antibodies were of the immunoglobulin G1 subclass and were able to activate complement on N-methyl d-aspartate receptor-expressing human embryonic kidney cells. From questionnaires returned on 44 N-methyl-d-aspartate receptor antibody-positive patients, we identified a high proportion without a detected tumour (35/44, 80%: follow-up 3.6–121 months, median 16 months). Among the latter were 15 adult females (43%), 10 adult males (29%) and 10 children (29%), with four in the first decade of life. Overall, there was a high proportion (29%) of non-Caucasians. Good clinical outcomes, as defined by reductions in modified Rankin scores, correlated with decreased N-methyl-d-aspartate receptor antibody levels and were associated with early (<40 days) administration of immunotherapies in non-paraneoplastic patients (P < 0.0001) and earlier tumour removal in paraneoplastic patients (P = 0.02). Ten patients (23%) who were first diagnosed during relapses had no evidence of tumours but had received minimal or no immunotherapy during earlier episodes. Temporal analysis of the onset of the neurological features suggested progression through two main stages. The time of onset of the early features, characterized by neuropsychiatric symptoms and seizures preceded by a median of 10–20 days, the onset of movement disorders, reduction in consciousness and dysautonomia. This temporal dichotomy was also seen in the timing of cerebrospinal fluid, electroencephalographic and in the rather infrequent cerebral imaging changes. Overall, our data support a model in which the early features are associated with cerebrospinal fluid lymphocytosis, and the later features with appearance of oligoclonal bands. The immunological events and neuronal mechanisms underlying these observations need to be explored further, but one possibility is that the early stage represents diffusion of serum antibodies into the cortical grey matter, whereas the later stage results from secondary expansion of the immunological repertoire within the intrathecal compartment acting on subcortical neurons. Four patients, who only had temporal lobe epilepsy without oligoclonal bands, may represent restriction to the first stage.


Lancet Neurology | 2011

Autoantibodies associated with diseases of the CNS: new developments and future challenges

Angela Vincent; Christian G. Bien; Sarosh R. Irani; Patrick Waters

Several CNS disorders associated with specific antibodies to ion channels, receptors, and other synaptic proteins have been recognised over the past 10 years, and can be often successfully treated with immunotherapies. Antibodies to components of voltage-gated potassium channel complexes (VGKCs), NMDA receptors (NMDARs), AMPA receptors (AMPARs), GABA type B receptors (GABA(B)Rs), and glycine receptors (GlyRs) can be identified in patients and are associated with various clinical presentations, such as limbic encephalitis and complex and diffuse encephalopathies. These diseases can be associated with tumours, but they are more often non-paraneoplastic, and antibody assays can help with diagnosis. The new specialty of immunotherapy-responsive CNS disorders is likely to expand further as more antibody targets are discovered. Recent findings raise many questions about the classification of these diseases, the relation between antibodies and specific clinical phenotypes, the relative pathological roles of serum and intrathecal antibodies, the mechanisms of autoantibody generation, and the development of optimum treatment strategies.


Annals of Neurology | 2011

Faciobrachial dystonic seizures precede Lgi1 antibody limbic encephalitis.

Sarosh R. Irani; Andrew W. Michell; Bethan Lang; Patrick Waters; Michael R. Johnson; Jonathan M. Schott; Richard J. E. Armstrong; Alessandro S. Zagami; Andrew Bleasel; Ernest Somerville; Shelagh M. J. Smith; Angela Vincent

To describe a distinctive seizure semiology that closely associates with voltage‐gated potassium channel (VGKC)‐complex/Lgi1 antibodies and commonly precedes the onset of limbic encephalitis (LE).


Brain | 2010

Intra-cerebral injection of neuromyelitis optica immunoglobulin G and human complement produces neuromyelitis optica lesions in mice

Samira Saadoun; Patrick Waters; B. Anthony Bell; Angela Vincent; A. S. Verkman; Marios C. Papadopoulos

Neuromyelitis optica is an inflammatory demyelinating disease of the central nervous system associated with autoantibodies against the glial water channel protein aquaporin-4. It has recently been reported that immunoglobulin from neuromyelitis optica patients injected peripherally does not cause lesions in naive rats, but only when pre-existing central nervous system inflammation is present. Here, we investigated whether immunoglobulin G from aquaporin-4-autoantibody-positive neuromyelitis optica patients has the potential to damage the central nervous system either alone or in the presence of human complement. Immunoglobulin G from neuromyelitis optica patients did not activate mouse complement and was not pathogenic when injected into mouse brain. However, co-injection of immunoglobulin G from neuromyelitis optica patients with human complement produced neuromyelitis optica-like lesions in mice. Within 12 h of co-injecting immunoglobulin G from neuromyelitis optica patients and human complement, there was a striking loss of aquaporin-4 expression, glial cell oedema, myelin breakdown and axonal injury, but little intra-parenchymal inflammation. At 7 days, there was extensive inflammatory cell infiltration, perivascular deposition of activated complement components, extensive demyelination, loss of aquaporin-4 expression, loss of reactive astrocytes and neuronal cell death. In behavioural studies, mice injected with immunoglobulin G from neuromyelitis optica patients and human complement into the right hemisphere preferentially turned to the right at 7 days. No brain inflammation, demyelination or right-turning behaviour was seen in wild-type mice that received immunoglobulin G from non-neuromyelitis optica patients with human complement, or in aquaporin-4-null mice that received immunoglobulin G from neuromyelitis optica patients with human complement. We conclude that co-injection of immunoglobulin G from neuromyelitis optica patients with human complement reproduces the key histological features of neuromyelitis optica and that aquaporin-4 is necessary and sufficient for immunoglobulin G from neuromyelitis optica patients to exert its effect. In our mouse model, immunoglobulin G from neuromyelitis optica patients does not require pre-existing central nervous system inflammation to produce lesions.


Neurology | 2014

Distinction between MOG antibody–positive and AQP4 antibody–positive NMO spectrum disorders

Douglas Kazutoshi Sato; Dagoberto Callegaro; Marco Aurélio Lana-Peixoto; Patrick Waters; Frederico Jorge; Toshiyuki Takahashi; Ichiro Nakashima; Samira Apostolos-Pereira; Natália Talim; Renata Simm; Angelina Maria Martins Lino; Tatsuro Misu; M I Leite; Masashi Aoki; Kazuo Fujihara

Objective: To evaluate clinical features among patients with neuromyelitis optica spectrum disorders (NMOSD) who have myelin oligodendrocyte glycoprotein (MOG) antibodies, aquaporin-4 (AQP4) antibodies, or seronegativity for both antibodies. Methods: Sera from patients diagnosed with NMOSD in 1 of 3 centers (2 sites in Brazil and 1 site in Japan) were tested for MOG and AQP4 antibodies using cell-based assays with live transfected cells. Results: Among the 215 patients with NMOSD, 7.4% (16/215) were positive for MOG antibodies and 64.7% (139/215) were positive for AQP4 antibodies. No patients were positive for both antibodies. Patients with MOG antibodies represented 21.1% (16/76) of the patients negative for AQP4 antibodies. Compared with patients with AQP4 antibodies or patients who were seronegative, patients with MOG antibodies were more frequently male, had a more restricted phenotype (optic nerve more than spinal cord), more frequently had bilateral simultaneous optic neuritis, more often had a single attack, had spinal cord lesions distributed in the lower portion of the spinal cord, and usually demonstrated better functional recovery after an attack. Conclusions: Patients with NMOSD with MOG antibodies have distinct clinical features, fewer attacks, and better recovery than patients with AQP4 antibodies or patients seronegative for both antibodies.


Neurology | 2012

Serologic diagnosis of NMO: a multicenter comparison of aquaporin-4-IgG assays.

Patrick Waters; A. McKeon; M I Leite; Sathyanath Rajasekharan; V.A. Lennon; A. Villalobos; Jacqueline Palace; J.N. Mandrekar; Angela Vincent; Amit Bar-Or; Sean J. Pittock

Objectives: Neuromyelitis optica (NMO) immunoglobulin G (IgG) (aquaporin-4 [AQP4] IgG) is highly specific for NMO and related disorders, and autoantibody detection has become an essential investigation in patients with demyelinating disease. However, although different techniques are now used, no multicenter comparisons have been performed. This study compares the sensitivity and specificity of different assays, including an in-house flow cytometric assay and 2 commercial assays (ELISA and transfected cell-based assay [CBA]). Methods: Six assay methods (in-house or commercial) were performed in 2 international centers using coded serum from patients with NMO (35 patients), NMO spectrum disorders (25 patients), relapsing-remitting multiple sclerosis (39 patients), miscellaneous autoimmune diseases (25 patients), and healthy subjects (22 subjects). Results: The highest sensitivities were yielded by assays detecting IgG binding to cells expressing recombinant AQP4 with quantitative flow cytometry (77; 46 of 60) or visual observation (CBA, 73%; 44 of 60). The fluorescence immunoprecipitation assay and tissue-based immunofluorescence assay were least sensitive (48%–53%). The CBA and ELISA commercial assays (100% specific) yielded sensitivities of 68% (41 of 60) and 60% (36 of 60), respectively, and sensitivity of 72% (43 of 60) when used in combination. Conclusions: The greater sensitivity and excellent specificity of second-generation recombinant antigen-based assays for detection of NMO-IgG in a clinical setting should enable earlier diagnosis of NMO spectrum disorders and prompt initiation of disease-appropriate therapies.


JAMA Neurology | 2008

Aquaporin-4 antibodies in neuromyelitis optica and longitudinally extensive transverse myelitis.

Patrick Waters; Sven Jarius; Edward Littleton; M I Leite; Saiju Jacob; Bryony Gray; Ruth Geraldes; Thomas Vale; Anu Jacob; Jacqueline Palace; Susan Maxwell; David Beeson; Angela Vincent

BACKGROUND There is increasing recognition of antibody-mediated immunotherapy-responsive neurologic diseases and a need for appropriate immunoassays. OBJECTIVES To develop a clinically applicable quantitative assay to detect the presence of aquaporin-4 (AQP4) antibodies in patients with neuromyelitis optica and to characterize the anti-AQP4 antibodies. DESIGN We compared a simple new quantitative fluorescence immunoprecipitation assay (FIPA) with both indirect immunofluorescence and an AQP4-transfected cell-based assay, both previously described. We used the cell-based assay to characterize the antibodies for their immunoglobulin class, IgG subclass, and ability to induce complement C3b deposition in vitro. SETTING United Kingdom and Germany. PARTICIPANTS Serum samples from patients with neuromyelitis optica (n = 25) or longitudinally extensive transverse myelitis (n = 11) and from relevant controls (n = 78) were studied. MAIN OUTCOME MEASURES Comparison of different assays for AQP4 antibodies and characterization of anti-AQP4 antibodies in patients with neuromyelitis optica. RESULTS We found antibodies to AQP4 in 19 of 25 patients with neuromyelitis optica (76%) using FIPA, in 20 of 25 patients with neuromyelitis optica (80%) using the cell-based assay, and in 6 of 11 patients with longitudinally extensive transverse myelitis (55%) with both assays; these assays were more sensitive than indirect immunofluorescence and 100% specific. The antibodies bound to extracellular epitope(s) of AQP4, were predominantly IgG1, and strongly induced C3b deposition. CONCLUSIONS Aquaporin-4 is a major antigen in neuromyelitis optica, and antibodies can be detected in more than 75% of patients. Further studies on larger samples will show whether this novel FIPA is suitable for clinical use. The IgG1 antibodies bind to AQP4 on the cell surface and can initiate complement deposition. These approaches will be useful for investigation of other antibody-mediated diseases.


Nature Reviews Neurology | 2008

Mechanisms of Disease: aquaporin-4 antibodies in neuromyelitis optica

Sven Jarius; Friedemann Paul; Diego Franciotta; Patrick Waters; Frauke Zipp; Reinhard Hohlfeld; Angela Vincent; Brigitte Wildemann

Neuromyelitis optica (NMO) is a rare CNS inflammatory disorder that predominantly affects the optic nerves and spinal cord. Recent serological findings strongly suggest that NMO is a distinct disease rather than a subtype of multiple sclerosis. In NMO, serum antibodies, collectively known as NMO-IgG, characteristically bind to cerebral microvessels, pia mater and Virchow–Robin spaces. The main target antigen for this immunoreactivity has been identified as aquaporin-4 (AQP4). The antibodies are highly specific for NMO, and they are also found in patients with longitudinally extensive transverse myelitis without optic neuritis, which is thought to be a precursor to NMO in some cases. An antibody-mediated pathogenesis for NMO is supported by several observations, including the characteristics of the AQP4 antibodies, the distinct NMO pathology—which includes IgG and complement deposition and loss of AQP4 from spinal cord lesions—and emerging evidence of the beneficial effects of B-cell depletion and plasma exchange. Many aspects of the pathogenesis, however, remain unclear.

Collaboration


Dive into the Patrick Waters's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Uday Kishore

John Radcliffe Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ming Lim

Guy's and St Thomas' NHS Foundation Trust

View shared research outputs
Researchain Logo
Decentralizing Knowledge